Skip to main content

Primary Solar Concentrators

  • Chapter
  • First Online:
Solar-Pumped Lasers

Part of the book series: Green Energy and Technology ((GREEN))

  • 122 Accesses

Abstract

Primary solar concentrators are of fundamental importance for efficient solar laser emissions. Parabolic mirror, flat Fresnel lens, elliptical-shaped Fresnel lens (ESFL), ring array concentrator (RAC), and three-dimensional ring array concentrator (3D RAC) solar concentration schemes are presented in this chapter. The readers will acquire the basic knowledge of solar concentration principles by learning numerical analysis of these primary solar concentrators, as well as the Zemax® object implementations and evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalogirou, S.: Solar energy engineering processes and systems (2014)

    Google Scholar 

  2. Rabl, A.: Active solar collectors and their applications (1985)

    Google Scholar 

  3. Winston, R.: Principles of solar concentrators of a novel design. Sol. Energy 16(2), 89–95 (1974). https://doi.org/10.1016/0038-092X(74)90004-8

    Article  Google Scholar 

  4. Viera-González, P.M., Sánchez-Guerrero, G.E., Martínez-Guerra, E., Ceballos-Herrera, D.E.: Mathematical analysis of nonimaging fresnel lenses using refractive and total internal reflection prisms for sunlight concentration. Math. Probl. Eng. 2018, 4654795 (2018). https://doi.org/10.1155/2018/4654795

    Article  MathSciNet  MATH  Google Scholar 

  5. Kritchman, E.M., Friesem, A.A., Yekutieli, G.: Highly concentrating fresnel lenses. Appl. Opt. 18(15), 2688–2695 (1979). https://doi.org/10.1364/AO.18.002688

    Article  Google Scholar 

  6. Leutz, R., Suzuki, A., Akisawa, A., Kashiwagi, T.: Design of a nonimaging Fresnel lens for solar concentrators. Sol. Energy 65(6), 379–387 (1999). https://doi.org/10.1016/S0038-092X(98)00143-1

    Article  Google Scholar 

  7. Yeh, N.: Analysis of spectrum distribution and optical losses under Fresnel lenses. Renew. Sustain. Energy Rev. 14(9), 2926–2935 (2010). https://doi.org/10.1016/j.rser.2010.07.016

    Article  Google Scholar 

  8. Akisawa, A., Hiramatsu, M., Ozaki, K.: Design of dome-shaped non-imaging Fresnel lenses taking chromatic aberration into account. Sol. Energy 86(3), 877–885 (2012). https://doi.org/10.1016/j.solener.2011.12.017

    Article  Google Scholar 

  9. Romero, M., Steinfeld, A.: Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5(11), 9234–9245 (2012). https://doi.org/10.1039/c2ee21275g

    Article  Google Scholar 

  10. Languy, F., Habraken, S.: Nonimaging achromatic shaped Fresnel lenses for ultrahigh solar concentration. Opt Lett 38(10), 1730–1732 (2013). https://doi.org/10.1364/OL.38.001730

    Article  Google Scholar 

  11. Leutz, R., Suzuki, A.: Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators (2001)

    Google Scholar 

  12. Cheng, Y., Zhang, X.D., Zhang, G.X.: Design and machining of Fresnel solar concentrator surfaces. Int. J. Precis. Technol. 3(4), 354–369 (2013). https://doi.org/10.1504/IJPTECH.2013.058257

    Article  Google Scholar 

  13. Zheng, H., Feng, C., Su, Y., Dai, J., Ma, X.: Design and experimental analysis of a cylindrical compound Fresnel solar concentrator. Sol. Energy 107, 26–37 (2014). https://doi.org/10.1016/j.solener.2014.05.010

    Article  Google Scholar 

  14. Yeh, N.: Illumination uniformity issue explored via two-stage solar concentrator system based on Fresnel lens and compound flat concentrator. Energy 95, 542–549 (2016). https://doi.org/10.1016/j.energy.2015.12.035

    Article  Google Scholar 

  15. Yeh, N., Yeh, P.: Analysis of point-focused, non-imaging Fresnel lenses’ concentration profile and manufacture parameters. Renew. Energy 85, 514–523 (2016). https://doi.org/10.1016/j.renene.2015.06.057

    Article  Google Scholar 

  16. Ma, X., Jin, R., Liang, S., Zheng, H.: Ideal shape of Fresnel lens for visible solar light concentration. Opt. Express 28(12), 18141–18149 (2020). https://doi.org/10.1364/OE.386599

    Article  Google Scholar 

  17. Yeh, N.: Optical geometry approach for elliptical Fresnel lens design and chromatic aberration. Sol. Energy Mater. Sol. Cells 93(8), 1309–1317 (2009). https://doi.org/10.1016/j.solmat.2009.02.012

    Article  Google Scholar 

  18. Vittitoe, C.N., Biggs, F.: Six-gaussian representation of the angular-brightness distribution for solar radiation. Sol. Energy 27(6), 469–490 (1981). https://doi.org/10.1016/0038-092X(81)90043-8

    Article  Google Scholar 

  19. Almeida, J., Liang, D., Vistas, C.R., Guillot, E.: Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system. Appl. Opt. 54(8), 1970–1977 (2015). https://doi.org/10.1364/AO.54.001970

    Article  Google Scholar 

  20. Flamant, G., Ferriere, A., Laplaze, D., Monty, C.: Solar processing of materials: opportunities and new frontiers. Sol. Energy 66(2), 117–132 (1999). https://doi.org/10.1016/S0038-092X(98)00112-1

    Article  Google Scholar 

  21. Ferriere, A., Sanchez Bautista, C., Rodriguez, G.P., Vazquez, A.J.: Corrosion resistance of stainless steel coatings elaborated by solar cladding process. Sol. Energy 80(10), 1338–1343 (2006). https://doi.org/10.1016/j.solener.2005.06.009

    Article  Google Scholar 

  22. Garcia, D., Liang, D., Tibúrcio, B.D., Almeida, J., Vistas, C.R.: A three-dimensional ring-array concentrator solar furnace. Sol. Energy 193, 915–928 (2019). https://doi.org/10.1016/j.solener.2019.10.016

    Article  Google Scholar 

  23. Garcia, D., Liang, D., Almeida, J., Tibúrcio, B.D., Costa, H., Catela, M., Vistas, C.R.: Elliptical-shaped fresnel lens design through gaussian source distribution. 15(2), 668 (2022)

    Google Scholar 

  24. Winter, C.J., Sizmann, R.L., Vant-Hull, L.L.: Solar Power Plants. Springer, Berlin Heidelberg (1991)

    Book  Google Scholar 

  25. International, A.: Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. In: ASTM G173–03(2012) (2012)

    Google Scholar 

  26. PROCÉDÉS, M.E.É.S.U.: MSSF horizontal—PROMES. https://www.promes.cnrs.fr/index.php?page=mssf-horizontal (2018). Accessed 7 Mar 2019

  27. Hornung, T., Steiner, M., Nitz, P.: Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system. Sol. Energy Mater. Sol. Cells 99, 333–338 (2012). https://doi.org/10.1016/j.solmat.2011.12.024

    Article  Google Scholar 

  28. N. Claytor, R.: Fresnel lens with apseheric grooves. United State of America Patent

    Google Scholar 

  29. Zemax Manual, vol. 13. Zemax, Radiant Zemax (2014)

    Google Scholar 

  30. López-Delgado, A., López-Andrés, S., Padilla, I., Álvarez, M., Galindo Llorach, R., Vázquez, A.: Dehydration of gypsum rock by solar energy: preliminary study. Geomaterials 4, 82 (2014)

    Article  Google Scholar 

  31. Sierra, C., Vázquez, A.: NiAl coatings on carbon steel by self-propagating high-temperature synthesis assisted with concentrated solar energy: Mass influence on adherence and porosity. Solar Energy Mater. Solar Cells 86, 33–42 (2005). https://doi.org/10.1016/j.solmat.2004.06.003

    Article  Google Scholar 

  32. Sierra, C., Vázquez, A.: NiAl coating on carbon steel with an intermediate Ni gradient layer. Surf. Coat. Technol. 200, 4383–4388 (2006). https://doi.org/10.1016/j.surfcoat.2005.02.176

    Article  Google Scholar 

  33. Garcia, D., Liang, D., Almeida, J., Tibúrcio, B.D., Costa, H., Catela, M., Vistas, C.R.: Analytical and numerical analysis of a ring-array concentrator. Int. J. Energy Res. 45(10), 15110–15123 (2021). https://doi.org/10.1002/er.6787

    Article  Google Scholar 

  34. Kostanovskii, A.V., Zeodinov, M.G., Kostanovskaya, M.E.: The determination of thermal conductivity and emissivity of graphite at high temperatures. High Temp. 43(5), 793–795 (2005). https://doi.org/10.1007/s10740-005.0125.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dário Garcia .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia, D. (2023). Primary Solar Concentrators. In: Solar-Pumped Lasers. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-24785-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24785-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24784-2

  • Online ISBN: 978-3-031-24785-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics