Skip to main content
Log in

Systematic bias due to nonspinning template waveforms in the gravitational wave parameter estimation for aligned-spin binary black holes

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study the parameter estimation of gravitational waves for aligned-spin binary black hole (BBH) signals and assess the impact of bias that can be produced by using nonspinning template waveforms. We employ simple methods to calculate the statistical uncertainty from an overlap distribution. For the fiducial waveform model, we use a phenomenological model, which is designed to generate the gravitational waveforms emitted from merging BBH systems. We show that the mass parameters recovered by using nonspinning waveform templates can be significantly biased from the true values of aligned-spin signals. By comparing the systematic bias with the statistical uncertainty, we examine the validity of nonspinning templates for the parameter estimation of aligned-spin BBHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  Google Scholar 

  2. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241103 (2016).

    Article  ADS  Google Scholar 

  3. J. Aasi et al. (LIGO Scientific Collaboration), Classical Quantum Gravity 32, 074001 (2015).

    Article  ADS  Google Scholar 

  4. F. Acernese et al., Classical Quantum Gravity 32, 024001 (2015).

    Article  ADS  Google Scholar 

  5. Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi and H. Yamamoto (The KAGRA Collaboration), Phys. Rev. D 88, 043007 (2013).

    Article  ADS  Google Scholar 

  6. J. Abadie et al. (LIGO Scientific Collaboration and Virgo Collaboration), Classical Quantum Gravity 27, 173001 (2010).

    Article  ADS  Google Scholar 

  7. M. Dominik, E. Berti, R. O’Shaughnessy, I. Mandel, K. Belczynski, C. Fryer, D. Holz, T. Bulik and F. Pannarale, Astrophys. J. 806, 263 (2015).

    Article  ADS  Google Scholar 

  8. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. Lett. 833, L1 (2016).

    Article  ADS  Google Scholar 

  9. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X 6, 041015 (2016).

    Google Scholar 

  10. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241102 (2016).

    Article  ADS  Google Scholar 

  11. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X 6, 041014 (2016).

    Google Scholar 

  12. B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown and J. D. E. Creighton, Phys. Rev. D 85, 122006 (2012).

    Article  ADS  Google Scholar 

  13. J. Aasi et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. D 88, 062001 (2013).

    Article  ADS  Google Scholar 

  14. N. Cornish, L. Sampson, N. Yunes and F. Pretorius, Phys. Rev. D 84, 062003 (2011).

    Article  ADS  Google Scholar 

  15. J. Veitch, I. Mandel, B. Aylott, B. Farr, V. Raymond, C. Rodriguez, M. V. van der Sluys, V. Kalogera and A. Vecchio, Phys. Rev. D 85, 104045 (2012).

    Article  ADS  Google Scholar 

  16. R. O’Shaughnessy, B. Farr, E. Ochsner, H-S. Cho, C. Kim and C-H. Lee, Phys. Rev. D 89, 064048 (2014).

    Article  ADS  Google Scholar 

  17. R. O’Shaughnessy, B. Farr, E. Ochsner, H-S. Cho, V. Raymond, C. Kim and C-H. Lee, Phys. Rev. D 89, 102005 (2014).

    Article  ADS  Google Scholar 

  18. L. S. Finn, Phys. Rev. D 46, 5236 (1992).

    Article  ADS  Google Scholar 

  19. C. Cutler and É. E. Flanagan, Phys. Rev. D 49, 2658 (1994).

    Article  ADS  Google Scholar 

  20. C. Cutler and M. Vallisneri, Phys. Rev. D 76, 104018 (2007).

    Article  ADS  Google Scholar 

  21. M. Favata, Phys. Rev. Lett. 112, 101101 (2014).

    Article  ADS  Google Scholar 

  22. H-S. Cho, Classical Quantum Gravity 32, 235007 (2015).

    Article  ADS  Google Scholar 

  23. E. Baird, S. Fairhurst, M. Hannam and P. Murphy, Phys. Rev. D 87, 024035 (2013).

    Article  ADS  Google Scholar 

  24. H-S. Cho, E. Ochsner, R. O’Shaughnessy, C. Kim and C-H. Lee, Phys. Rev. D 87, 024004 (2013).

    Article  ADS  Google Scholar 

  25. H-S. Cho and C-H. Lee, Classical Quantum Gravity 31, 235009 (2014).

    Article  ADS  Google Scholar 

  26. S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J. Forteza and A. Bohé, Phys. Rev. D 93, 044007 (2016).

    Article  ADS  Google Scholar 

  27. Advanced LIGO anticipated sensitivity curves, https://dcc.ligo.org/LIGO-T0900288/public.

  28. M. Vallisneri, Phys. Rev. D 77, 042001 (2008).

    Article  ADS  Google Scholar 

  29. P. Jaranowski and A. Królak, Phys. Rev. D 49, 1723 (1994).

    Article  ADS  Google Scholar 

  30. H-S. Cho, J. Korean Phys. Soc. 66, 1637 (2015).

    Article  ADS  Google Scholar 

  31. H-S. Cho, J. Korean Phys. Soc. 67, 960 (2015).

    Article  ADS  Google Scholar 

  32. H-S. Cho, J. Korean Phys. Soc. 69, 884 (2016).

    Article  ADS  Google Scholar 

  33. P. Ajith et al., Classical Quantum Gravity 24, S689 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  34. P. Ajith et al., Phys. Rev. D 77, 104017 (2008); 79, 129901(E) (2009).

    Article  ADS  MathSciNet  Google Scholar 

  35. P. Ajith, Classical Quantum Gravity 25, 114033 (2008).

    Article  ADS  Google Scholar 

  36. P. Ajith et al., Phys. Rev. Lett. 106, 241101 (2011).

    Article  ADS  Google Scholar 

  37. L. Santamaria et al., Phys. Rev. D 82, 064016 (2010).

    Article  ADS  Google Scholar 

  38. M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten and M. Pürrer, Phys. Rev. Lett. 113, 151101 (2014).

    Article  ADS  Google Scholar 

  39. H-S. Cho, Classical Quantum Gravity 32, 215023 (2015).

    Article  ADS  Google Scholar 

  40. P. Ajith, Phys. Rev. D 84, 084037 (2011).

    Article  ADS  Google Scholar 

  41. M. Pürrer, M. Hannam, P. Ajith and S. Husa, Phys. Rev. D 88, 064007 (2013).

    Article  ADS  Google Scholar 

  42. A. B. Nielsen, Classical Quantum Gravity 30, 075023 (2013).

    Article  ADS  Google Scholar 

  43. M. Pürrer, M. Hannam and F. Ohme, Phys. Rev. D 93, 084042 (2016).

    Article  ADS  Google Scholar 

  44. H-S. Cho, Phys. Rev. D 94, 124045 (2016).

    Article  ADS  Google Scholar 

  45. C-J. Haster, I. Mandel and W. M. Farr, Classical Quantum Gravity 32, 235017 (2015).

    Article  ADS  Google Scholar 

  46. C. P. L. Berry et al., Astrophys. J. 804, 114 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Suk Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, HS. Systematic bias due to nonspinning template waveforms in the gravitational wave parameter estimation for aligned-spin binary black holes. Journal of the Korean Physical Society 70, 735–739 (2017). https://doi.org/10.3938/jkps.70.735

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.70.735

Keywords

Navigation