Skip to main content
Log in

Development of a novel depth-of-interaction encoding method and use of light spreading in a scintillation crystal array with single-ended readout

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We designed a depth-of-interaction (DOI) positron emission tomography detector by applying a simple light-spreading method in a single-layer crystal array with a single-ended photosensor. By configuring different reflector patterns along the depth of the crystal, we were able to alter the light distribution of the gamma interaction at each depth. To evaluate the characteristics of the new DOI detector, we simulated the optical photon transport in the crystal array by using DETECT2000. Three different arrays comprising triangular-, square-, and hexagonal-shaped crystals were modeled. The 511-keV gamma-ray interactions were generated for all depths, and flood images were acquired. We confirmed that DOI layers could be distinguished in the obtained images and that the number of DOI layers depends on the number of sides of the polygonal crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Peng and C. S. Levin, Curr. Pharm. Biotechnol. 11, 555 (2010).

    Article  Google Scholar 

  2. R. S. Miyaoka, T. K. Lewellen, H. Yu and D. L. Mc- Daniel, IEEE Trans. Nucl. Sci. 45, 1069 (1998).

    Article  ADS  Google Scholar 

  3. S. E. Derenzo, W. W. Moses, H. G. Jackson, B. T. Turko, J. L. Cahoon, A. B. Geyer and T. Vuletich, IEEE Trans. Nucl. Sci. 36, 1084 (1989).

    Article  ADS  Google Scholar 

  4. W. W. Moses, S. E. Derenzo, C. L. Melcher and R. A. Manente, IEEE Trans. Nucl. Sci. 42, 1085 (1995).

    Article  ADS  Google Scholar 

  5. J. Seidel, J. J. Vaquero, S. Siegel, W. R. Gandler and M. V. Green, IEEE Trans. Nucl. Sci. 46, 485 (1999).

    Article  ADS  Google Scholar 

  6. Y. Yang, P. A. Dokhale, R. W. Silverman, K. S. Shah, M. A. McClish, R. Farrell, G. Entine and S. R. Cherry, Phys. Med. Biol. 51, 2131 (2006).

    Article  Google Scholar 

  7. T. Ling, T. K. Lewellen and R. S. Miyaoka, Phys. Med. Biol. 52, 2213 (2007).

    Article  Google Scholar 

  8. Y. H. Chung, S. J. Lee, C. H. Baek and Y. Choi, Nucl. Instr. Meth. A 593, 588 (2008).

    Article  ADS  Google Scholar 

  9. S. J. Lee, C. H. Baek and Y. H. Chung, J. Korean Phys. Soc. 54, 2429 (2009).

    Article  ADS  Google Scholar 

  10. M. Ito, J. S. Lee, M. J. Park, K. S. Sim and S. J. Hong, Phys. Med. Biol. 55, 3827 (2010).

    Article  Google Scholar 

  11. J. S. Karp and M. E. Daube-Witherspoon, Nucl. Instr. Meth. A 260, 509 (1987).

    Article  ADS  Google Scholar 

  12. J. H. Jung, Y. Choi, Y. H. Chung, O. Devroede, M. Krieguer, P. Bruyndonckx and S. Tavernier, Nucl. Instr. Meth. A 571, 669 (2007).

    Article  ADS  Google Scholar 

  13. P. Chandrikamohan and T. A. DeVol, IEEE Trans. Nucl. Sci. 54, 398 (2007).

    Article  ADS  Google Scholar 

  14. M. Streun, G. Brandenburg, H. Larue, H. Saleh, E. Zimmermann, K. Ziemons and H. Halling, IEEE Trans. Nucl. Sci. 50, 344 (2003).

    Article  ADS  Google Scholar 

  15. M. Ito, J. S. Lee, S. I. Kwon, G. S. Lee, B. Hong, K. S. Lee, K. S. Sim, S. J. Lee, J. T. Rhee and S. J. Hong, IEEE Trans. Nucl. Sci. 57, 976 (2010).

    Article  ADS  Google Scholar 

  16. Y. H. Chung, J. Y. Hwang, C. H. Baek, S. J. An, H. I. Kim and K. H. Kim, Nucl. Instr. Meth. A 652, 802 (2011).

    Article  ADS  Google Scholar 

  17. M. Ito, S. J. Hong and J. S. Lee, Biomed. Eng. Lett. 1, 70 (2011).

    Article  Google Scholar 

  18. T. K. Lewellen, Phys. Med. Biol. 53, R287 (2008).

    Article  ADS  Google Scholar 

  19. F. Cayouette, D. Laurendeau and C. Moisan, SPIE 4833, Appl. Photonic Tech. 5, 69 (2003).

    ADS  Google Scholar 

  20. Hamamatsu MPPC, http://www.hamamatsu.com/resou-rces/pdf/ssd/s13361-3050 series kapd1054e.pdf.

  21. Saint-Gobain Crystals optical grease, http://www.crysta-ls.saint-gobain.com/sites/imdf.crystals.com/files/docum-ents/detector-assembly-materials 69673.pdf.

  22. Y. H. Chung, J. Y. Hwang, C. H. Baek, S. J. Lee, M. Ito, J. S. Lee and S. J. Hong, Nucl. Instr. Meth. A 626-627, 43 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Hyun Chung or Jihoon Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SJ., Lee, C., Chung, Y.H. et al. Development of a novel depth-of-interaction encoding method and use of light spreading in a scintillation crystal array with single-ended readout. Journal of the Korean Physical Society 69, 1842–1846 (2016). https://doi.org/10.3938/jkps.69.1842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1842

Keywords

Navigation