Skip to main content
Log in

Shock waves and double layers in a quantum electron-positron-ion plasma

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The ion-acoustic (IA) shock waves and double layers (DLs) in an unmagnetized, dissipative, quantum electron-positron-ion (EPI) plasma (composed of a viscous heavy ion fluid, Fermi electrons and positrons) have been theoretically investigated. The higher-order Burgers and Gardner equations are derived by employing the reductive perturbation method. The basic features of the IA shock waves and the DLs are identified by analyzing the solutions of both the higher-order Burgers and Gardner equations. The ratio of the Fermi temperature of the positron to that of the electron, the Fermi pressure of electrons and positrons, the viscous force, the plasma particle number densities, etc. are found to change remarkably the basic features (viz. amplitude, width, phase speed, etc.) of the IA waves. The results of our investigation may be helpful in understanding the nonlinear features of localized IA waves propagating in quantum EPI plasmas which are ubiquitous in astrophysical, as well as laboratory, environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (John Wiley, New York, 1983).

    Book  Google Scholar 

  2. H. R. Miller and P. J. Witta, Active Galactic Nuclei (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  3. P. Martin, J. Vink, S. Jiraskova, P. Jean and R. Diehl, A & A 519, A100 (2010).

  4. R. Popham, S. E. Woosley and C. L. Fryer, Astrophys. J. 518, 356 (1999).

    Article  ADS  Google Scholar 

  5. S. R. Furlanetto and A. Loeb, Astrophys. J. 569, L91 (2002).

    Article  ADS  Google Scholar 

  6. E. P. Liang, S. C. Wilks and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998).

    Article  ADS  Google Scholar 

  7. C. Gahn, G. D. Tsakiris, G. Pretzler, K. J. Witte, C. Delfin, C. G. Wahlstrom and D. Habs, Appl. Phys. Lett. 77, 2662 (2000).

    Article  ADS  Google Scholar 

  8. M. Murklund and P. K. Shukla, Rev. Mod. Phys. 78, 591 (2006).

    Article  ADS  Google Scholar 

  9. V. I. Berezhiani, D. D. Tskhakaya and P. K. Shukla, Phys. Rev. A 46, 6608 (1992).

    Article  ADS  Google Scholar 

  10. Ata-ur-Rahman M. Mc Kerr, W. F. El-Taibany, I. Kourakis and A. Qamar, Phys. Plasmas 22, 022305 (2015).

    Article  ADS  Google Scholar 

  11. E. Fiandrini et al., J. Geophys. Res. 108, 1402 (2003).

    Article  Google Scholar 

  12. A. M. Galper, S. V. Koldashov, V. V. Mikhailov and S. A. Voronov, Radiation Measurements 26, 375 (1996).

    Article  Google Scholar 

  13. S. A. Voronov, A. M. Galper, V. G. Kirilov-Ugryumov, S. V. Koldashov and A. V. Popov, JETP Lett. 43, 307 (1986).

    ADS  Google Scholar 

  14. H. Ikezi, R. J. Taylor and D. R. Baker, Phys. Rev. Lett. 25, 11 (1970).

    Article  ADS  Google Scholar 

  15. M. Q. Tran, Phys. Scr. 20, 317 (1979).

    Article  ADS  Google Scholar 

  16. Y. Nakamura, IEEE Trans. Plasma Sci. 7, 232 (1982).

    Google Scholar 

  17. H. K. Andersen, N. D’Angelo, P. Michelsen and P. Nielsen, Phys. Rev. Lett. 19, 149 (1967).

    Article  ADS  Google Scholar 

  18. C. Chan, M. Khazei, K. E. Lonngren and N. Hershkowitz, Phys. Fluids 24, 1452 (1981).

    Article  ADS  Google Scholar 

  19. Ata-ur-Rahman S. Ali, A. Mushtaq and A. Qamar, J. Plasma Phys. 79, 817 (2013).

    Article  ADS  Google Scholar 

  20. M. A. Hossen, M. R. Hossen and A. A. Mamun, Braz J. Phys 44, 703 (2014).

    Article  ADS  Google Scholar 

  21. M. Mehdipoor and A. Esfandyari-Kalejahi, Astrophys. Space Sci. 342, 93 (2012).

    Article  ADS  Google Scholar 

  22. Ata-ur-Rahman S. Ali, Arshad M. Mirza and A. Qamar, Phys. Plasmas 20, 042305 (2013).

    Article  ADS  Google Scholar 

  23. S. K. El-Labany, E. F. El-Shamy, W. F. El-Taibany and P. K. Shukla, Phys. Lett. A 374, 960 (2010).

    Article  ADS  Google Scholar 

  24. M. Ferdousi, S. Yasmin, S. Ashraf and A. A. Mamun, IEEE Trans. Plasma Sci. 43, 643 (2015).

    Article  ADS  Google Scholar 

  25. M. S. Zobaer, N. Roy and A. A. Mamun, J. Plasma Phys. 79, 65 (2013).

    Article  ADS  Google Scholar 

  26. A. A. Mamun and P. K. Shukla, Europhys. Lett. 94, 65002 (2011).

    Article  ADS  Google Scholar 

  27. H. R. Pakzad, Astrophys. Space Sci. 331, 169 (2011).

    Article  ADS  Google Scholar 

  28. K. Roy, A. P. Misra and P. Chattergee, Phys. Plasmas 15, 032310 (2008).

    Article  ADS  Google Scholar 

  29. S. Ali, W. M. Moslem, P. K. Shukla and R. Schlickeiser, Phys. Plasmas 14, 082307 (2007).

    Article  ADS  Google Scholar 

  30. C. Bhowmik, A. P. Misra and P. K. Shukla, Phys. Plasmas 14, 122107 (2007).

    Article  ADS  Google Scholar 

  31. Saeed-ur-Rehman N. Akhtar and A. Shah, Phys. Plasmas 18, 032303 (2011).

    Article  ADS  Google Scholar 

  32. M. M. Hossain, A. A. Mamun and K. S. Ashrafi, Phys. Plasmas 18, 103704 (2011).

    Article  ADS  Google Scholar 

  33. F. Haas, L. G. Garcia, J. Goedert and G. Manfredi, Phys. Plasmas 10, 3858 (2003).

    Article  ADS  Google Scholar 

  34. S. Mahmood and A. Mushtaq, Phys. Lett. A 372, 3467 (2008).

    Article  ADS  Google Scholar 

  35. H. Metref and M. Tribeche, Phys. Plasmas 21, 122117 (2014).

    Article  ADS  Google Scholar 

  36. A. Mushtaq and S. A. Khan, Phys. Plasmas 14, 052307 (2007).

    Article  ADS  Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Butterworth-Heinemann, Oxford, 1980).

    MATH  Google Scholar 

  38. M. S. Zobaer, K. N. Mukta, L. Nahar, N. Roy and A. A. Mamun, IEEE Trans. Plasma Sci. 41, 1614 (2013).

    Article  ADS  Google Scholar 

  39. A. Mannan and A. A. Mamun, Phys. Rev. E 84, 026408 (2011).

    Article  ADS  Google Scholar 

  40. S. T. Shuchy, A. Mannan and A. A. Mamun, JETP Lett. 95, 282288 (2012).

    Article  Google Scholar 

  41. A. A. Mamun and M. S. Zobaer, Phys. Plasmas 21, 022101 (2014).

    Article  ADS  Google Scholar 

  42. S. A. Khan, Indian J. Phys 88, 433 (2014).

    Article  ADS  Google Scholar 

  43. M. Rosenberg and G. J. Kalman, Europhys. Lett. 75, 894 (2006).

    Article  ADS  Google Scholar 

  44. C. Kojima, K. Minami, W. Qin and O. Ishihara, IEEE Trans. Plasma Sci. 31, 1379 (2003).

    Article  ADS  Google Scholar 

  45. M. A. Hossen and A. A. Mamun, Phys. Plasmas 22, 073505 (2015).

    Article  ADS  Google Scholar 

  46. M. Akbari-Moghanjoughi, Phys. Plasmas 17, 082315 (2010).

    Article  ADS  Google Scholar 

  47. R. Sabry, W. M. Moslem, F. Haas, S. Ali and P. K. Shukla, Phys. Plasmas 15, 122308 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Dip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dip, P.R., Hossen, M.A., Salahuddin, M. et al. Shock waves and double layers in a quantum electron-positron-ion plasma. Journal of the Korean Physical Society 68, 520–527 (2016). https://doi.org/10.3938/jkps.68.520

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.520

Keywords

Navigation