Skip to main content
Log in

Obliquely propagating solitary structures in a heavier ion Fermi plasma

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

By employing quantum hydrodynamic formulation, oblique propagation of electrostatic ion waves and nonlinear structures are investigated in a magnetized dense Fermi plasma. Constituents are quantum (degenerate) electrons and non-degenerate mobile ions in presence of stationary massive ions (either positive or negative) in background. To reveal features of low frequency ion waves, where effects of Fermi degeneracy and quantum diffraction are significant, linear dispersion equation is derived by Fourier analysis of model equations. Nonlinear solitary pulse solution in low-amplitude limit is obtained via Korteweg de Vries equation. It is shown that wave dispersion due to electron Fermi pressure is important at very short wavelength regime. Effects of concentration of heavy ions and angle of propagation on wave are also studied. Results are discussed numerically with relevance of superdense plasmas mainly found in astrophysical regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M Bonitz, A Filinov, J Boning and J W Dufty Introduction to Complex Plasmas (Berlin: Springer) (eds.) M Bonitz, N J Horing and P Ludwig p 41 (2010)

  2. S A Khan and M Bonitz Quantum hydrodynamics Complex Plasmas: Scientific Challenges and Technological Opportunities (Berlin: Springer) (eds.) M Bonitz, K Becker, J Lopez and H Thomsen (2013)

  3. F Haas Quantum Plasmas-An Hydrodynamic Approach (New York: Springer) (2011)

    Book  Google Scholar 

  4. P K Shukla and B Eliasson Rev. Mod. Phys. 83 885 (2011)

    Article  ADS  Google Scholar 

  5. D Kremp, M Schlanges and W D Kraeft Quantum Statistics of Nonideal Plasmas (Berlin: Springer) (2005)

    Google Scholar 

  6. A Markowich, C Ringhofer and C Schmeiser Semiconductor Equations (Vienna: Springer) (1990)

    Book  MATH  Google Scholar 

  7. G Manfredi, P-A Hervieux, Y Yin and N Crouseilles Atomic-Scale Modeling of Nanosystems and NanostructuredMaterials, (Berlin: Springer) (eds.) C Massobrio, H Bulou and C Goyhenex p 1 (2010)

  8. S H Glenzer and R Redmer Rev. Mod. Phys. 81 1625 (2009)

    Article  ADS  Google Scholar 

  9. A Serbeto, L Monteiro, K Tsui and J T Mendonca Plasma Phys. Control. Fusion 51 124024 (2009)

    Article  ADS  Google Scholar 

  10. G Chabrier, D Saumon and A Y Potekhin J. Phys. A: Math. Gen. 39 4411 (2006)

    Article  ADS  Google Scholar 

  11. A Y Potekhin, G Chabrier, D Lai, W C G Ho and M van Adelsberg J. Phys. A: Math. Gen. 39 4453 (2006)

    Article  ADS  Google Scholar 

  12. A K Harding and D Lai Rep. Prog. Phys. 69 2631 (2006)

    Article  ADS  Google Scholar 

  13. C Deutsch Phys. Lett. A 60 317 (1977)

    Article  ADS  Google Scholar 

  14. C Deutsch, M M Gombert and H Minoo Phys. Lett. A 66 381 (1978)

    Article  ADS  Google Scholar 

  15. V S Belyaev and V N Mikhaelov Laser Phys. 11 957 (2001)

    Google Scholar 

  16. F Haas, L G Garcia, J Goedert and G Manfredi Phys. Plasmas 10 3858 (2003)

    Article  ADS  Google Scholar 

  17. F Haas Phys. Plasmas 12 062117 (2005)

    Article  ADS  Google Scholar 

  18. P K Shukla and B Eliasson Phys. Rev. Lett. 96 245001 (2006)

    Article  ADS  Google Scholar 

  19. S Chndrasekhar An Introduction to study of Stellar Structure (Chicago: University of Chicago Press) (1939)

    Google Scholar 

  20. G Manfredi and F Haas Phys. Rev. B 64 075316 (2001)

    Article  ADS  Google Scholar 

  21. G Manfredi Fields Inst. Commun. 46 263 (2005)

    MathSciNet  Google Scholar 

  22. P K Shukla and B Eliasson Phys. Rev. Lett. 99 096401 (2007)

    Article  ADS  Google Scholar 

  23. S A Khan Phys. Plasmas 19 014506 (2012)

    Article  ADS  Google Scholar 

  24. I Zeba, W M Moslem and P K Shukla Astrophys J. 750 72 (2012)

    Article  ADS  Google Scholar 

  25. R Sabry, W M Moslem and P K Shukla Eur. Phys. J. D 51 233 (2009)

    Article  ADS  Google Scholar 

  26. W F El-Taibany and A A Mamun Phys. Rev. E 85 026406 (2012)

    Article  ADS  Google Scholar 

  27. S A Khan and W Masood Phys. Plasmas 15 062301 (2008)

    Article  ADS  Google Scholar 

  28. S A Khan Astrophys. Space Sci. Phys. 343 683 (2011)

    Article  ADS  Google Scholar 

  29. S A Khan, S Mahmood and M Mirza Arshad Phys. Lett. A 372 148 (2008)

    Article  MATH  ADS  Google Scholar 

  30. L Stenflo, P K Shukla and M Marklund Europhys. Lett. 74 844 (2005)

    Article  ADS  Google Scholar 

  31. W M Moslem, S Ali, P K Shukla, X Y Yang and G Rowlands Phys. Plasmas 14 082308 (2007)

    Article  ADS  Google Scholar 

  32. S A Khan, A Mushtaq and W Masood Phys. Plasmas 15 013701 (2008)

    Article  ADS  Google Scholar 

  33. B Sahu and R Roychoudhury Indian J. Phys. 86 401 (2012)

    Article  ADS  Google Scholar 

  34. A H Bhrawy, M A Abdelkawy, S Kumar, S Johnson and A Biswas Indian J. Phys. 87 455 (2013)

    Article  ADS  Google Scholar 

  35. A A Mamun, M N Alam, A K Das, Z Ahmed and T K Datta Phys. Scr. 28 72 (1998)

    Article  ADS  Google Scholar 

  36. H Washimi and T Taniuti Phys. Rev. Lett. 17 996 (1966)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.A. Obliquely propagating solitary structures in a heavier ion Fermi plasma. Indian J Phys 88, 433–438 (2014). https://doi.org/10.1007/s12648-013-0427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-013-0427-9

Keywords

PACS Nos.

Navigation