Skip to main content
Log in

Measuring the local electrical properties of individual vanadium-pentoxide nanowires by using electrostatic force microscopy

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A nanoscale investigation of the local electrical properties of individual vanadium-pentoxide (V2O5) nanowires (NWs) deposited on a SiO2/p+ Si substrate was carried out by using electrostatic force microscopy (EFM) in ambient conditions. We found that the EFM phase shift as an electrostatic response of V2O5 NWs to the biased-tip decreases with the lift height due to the electrostatic force gradient. We also observed that the EFM phase shift of V2O5 NWs shows the quadratic voltage dependence for a biased-tip with a fixed lift height. Furthermore, it is observed that the crossed junctions or bundles of the NWs compared to the single NWs showed higher electrostatic response, resulting in a large phase shift in the EFM measurements. These results suggest that the local electrical properties of V2O5 NW surface can be characterized in the nanoscale range by using EFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim and C. M. Lieber, Science 294, 1313 (2001).

    Article  ADS  Google Scholar 

  2. Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath and C. M. Lieber, Science 302, 1377 (2003).

    Article  ADS  Google Scholar 

  3. J. Guo, M. Lundstrom and S. Datta, Appl. Phys. Lett. 80, 3192 (2002).

    Article  ADS  Google Scholar 

  4. Z. Chen, J. Appenzeller, Y.-M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Tang, S. J. Wind, P. M. Solomon and P. Avouris, Science 311, 1735 (2006).

    Article  Google Scholar 

  5. D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally and P. Yang, Proc. Natl. Acad. Sci. USA 102, 7800 (2005).

    Article  ADS  Google Scholar 

  6. A. Star, T. R. Han, V. Joshi, J. C. P. Gabriel and G. Grüner, Adv. Mater. 16, 2049 (2004).

    Article  Google Scholar 

  7. X. H. Liu et al., Nano Lett. 11, 3312 (2011).

    Article  Google Scholar 

  8. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).

    Article  ADS  Google Scholar 

  9. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, Nature 386, 377 (1997).

    Article  ADS  Google Scholar 

  10. D. McNulty, D. N. Buckley and C. O’Dwyer, J. Power Sources 267, 831 (2014).

    Article  Google Scholar 

  11. D. Chen, H. Quan, S. Luo, X. Luo, F. Deng and H. Jiang, Physica E 56, 231 (2014).

    Article  ADS  Google Scholar 

  12. D. Chen, R. Yi, S. Chen, T. Xu, M. L. Gordin, D. Lv and D. Wang, Mat. Sci. Eng. B 185, 7 (2014).

    Article  Google Scholar 

  13. T. Kim et al., Nanotechnology 24, 375302 (2013).

    Article  Google Scholar 

  14. O. Cherniavskaya, L. Chen, V. Weng, L. Yuditsky and L. E. Brus, J. Phys. Chem. B 107, 1525 (2003).

    Article  Google Scholar 

  15. S. V. Kalinin and D. A. Bonnell, Phys. Rev. B 62, 10419 (2000).

    Article  ADS  Google Scholar 

  16. T. D. Krauss and L. E. Brus, Phys. Rev. Lett. 83, 4840 (1999).

    Article  ADS  Google Scholar 

  17. J. T. Jones, P. M. Bridger, O. J. Marsh and T. C. McGill, Appl. Phys. Lett. 75, 1326 (1999).

    Article  ADS  Google Scholar 

  18. L. J. Klein and C. C. Williams, Appl. Phys. Lett. 79, 1828 (2001).

    Article  ADS  Google Scholar 

  19. C. Gómez-Navarro, F. Moreno-Herrero, P. J. de Pablo, J. Colchero, J. Gómez-Herrero and A. M. Baró, Proc. Natl. Acad. Sci. USA 99, 8484 (2002).

    Article  ADS  Google Scholar 

  20. A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson, A. Zettl and P. L. McEuen, Phys. Rev. Lett. 84, 6082 (2000).

    Article  ADS  Google Scholar 

  21. Y. Liang, D. A. Bonnell, W. D. Goodhue, D. D. Rathman and C. O. Bozler, Appl. Phys. Lett. 66, 1147 (1995).

    Article  ADS  Google Scholar 

  22. T. Hassenkam, D. R. Greve and T. Bjørnholm, Adv. Mater. 13, 631 (2001).

    Article  Google Scholar 

  23. T. S. Jespersen and J. Nygård, Nano Lett. 5, 1838 (2005).

    Article  ADS  Google Scholar 

  24. M. Bockrath, N. Markovic, A. Shepard, M. Tinkham, L. Gurevich, L. P. Kouwenhoven, M. W. Wu and L. L. Sohn, Nano Lett. 2, 187 (2002).

    Article  ADS  Google Scholar 

  25. J. Colchero, A. Gil and A. M. Baró, Phys. Rev. B 64, 245403 (2001).

    Article  ADS  Google Scholar 

  26. C. Staii, A. T. Johnson and N. J. Pinto, Nano Lett. 4, 859 (2004).

    Article  ADS  Google Scholar 

  27. S. Myung, M. Lee, G. T. Kim, J. S. Ha and S. Hong, Adv. Mater. 17, 2361 (2005).

    Article  Google Scholar 

  28. E. Hryha, E. Rutqvist and L. Nyborg, Surf. Interface Anal. 44, 1022 (2012).

    Article  Google Scholar 

  29. J. K. Bailey, G. A. Pozarnsky and M. L. Mecartney, J. Mater. Res. 7, 2530 (1992).

    Article  ADS  Google Scholar 

  30. T. Kim, S. Myung, T. H. Kim and S. Hong, Small 4, 1072 (2008).

    Article  Google Scholar 

  31. M.-F. Yu, T. Kowalewski and R. S. Ruoff, Phys. Rev. Lett. 85, 1456 (2000).

    Article  ADS  Google Scholar 

  32. J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl and A. Kahn, Adv. Mater. 24, 5408 (2012).

    Article  Google Scholar 

  33. C. Glynn, D. Creedon, H. Geaney, E. Armstrong, T. Collins, M. A. Morris and C. O. Dwyer, Sci. Rep. 5, 11574 (2015).

    Article  ADS  Google Scholar 

  34. Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi and Y. Zhang, Nano Lett. 12, 1919 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyeong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.H., Kim, T. Measuring the local electrical properties of individual vanadium-pentoxide nanowires by using electrostatic force microscopy. Journal of the Korean Physical Society 67, 2081–2085 (2015). https://doi.org/10.3938/jkps.67.2081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.2081

Keywords

Navigation