Skip to main content

Surface Functionalization of III–V Nanowires

  • Chapter
  • First Online:
Fundamental Properties of Semiconductor Nanowires

Abstract

The physical and chemical properties of semiconductor nanowires are significantly influenced by their surface structure and morphology. This can be understood in that surfaces make out a much larger part of the total structure as compared to macroscale objects. An immediate consequence is that the lack of surface control can result in poor performance and reproducibility of any nanowire device. It is clear that bad performance is problematic, but it must be stressed that without performance reproducibility across millions of nanowires they can never become a useful real technology. This is indeed why many promising nanostructures and materials lost interest of both the scientific and commercial communities. However, surface control also can be used to strongly enhance nanowire performance and even introduce new functionality. As a result, surface functionalization is a key issue for nanowire science and technology. In this chapter, we describe in detail how standard surface science techniques such as Scanning Tunneling Microscopy (STM) and X-ray Photoemission Spectroscopy (XPS) can be modified for effective studies of 1D nanowires despite that they have been originally invented only for large and flat 2D surfaces. We go on to give a number of examples on how these techniques have revealed the precise structure–function relationship in particular of III–V semiconductor nanowires and their surfaces. We further discuss, how this can be used to control the structure and chemistry of the wires down to the atomic scale enabling new functionality for (opto)electronics, sensors, and many other device types. While we focus on III–V nanowires, the examples and techniques put forward should be applicable to many other material systems and types of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt, Y. Zhu, J. Park, P.L. McEuen, D.A. Muller, Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011)

    Google Scholar 

  2. F. Banharl, J. Kotakoski, A.V. Kraheninnikov, Structural defects in graphene. ACS Nano 5(1), 26–41 (2011)

    Article  CAS  Google Scholar 

  3. S.A. Jewett, J.A. Yoder, A. Ivanisevic, Surface modificaitons on InAs decrease indium and arsenic leaching under physiological conditions. Appl. Surf. Sci. 261, 842–850 (2012)

    Article  CAS  Google Scholar 

  4. O. Demichel, M. Heiss, J. Bleuse, H. Mariette, A. Fontcuberta i Morral, Impact of surfaces on the optical properties of GaAs nanowires. Appl. Phys. Lett. 97, 201907 (2010)

    Google Scholar 

  5. L. Zhou, D.F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E.A. Carter, P. Nordlander, N.J. Halas, Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362(6410), 69–72 (2018)

    Article  CAS  Google Scholar 

  6. J.G. Wang, W.X. Li, M. Borg, J. Gustafson, A. Mikkelsen, T.M. Pedersen, E. Lundgren, J. Weissenrieder, J. Klikovits, M. Schmid, B. Hammer, J.N. Andersen, One-dimensional PtO2 at Pt steps: formation and reaction with CO. Phys. Rev. Lett. 95(25), 256102 (2005)

    Google Scholar 

  7. H. Lee, Utilization of shape-controlled nanoparticles as catalysts with enhanced activity and selectivity. RSC Adv. 4, 41017–41027 (2014)

    Article  CAS  Google Scholar 

  8. J.F. Fennell Jr., S.F. Liu, J.M. Azzarelli, J.G. Weis, S. Rochat, K.A. Mirica, J.B. Ravnsbaek, T.M. Swager, Nanowire chemical/biological sensors: status and a roadmap for the future. Angew. Chem. Int. Ed. Engl. 55(4), 1266–1281 (2016)

    Google Scholar 

  9. K. Tomioka, J. Motohisa, S. Hara, T. Fukui, Control of InAs nanowire growth directions on Si. Nano Lett. 8(10), 3475–3480 (2008)

    Article  CAS  Google Scholar 

  10. A. Mikkelsen, E. Lundgren, Surface science of free standing semiconductor nanowires. Surf. Sci. 607, 97–105 (2013)

    Article  CAS  Google Scholar 

  11. A. Mikkelsen, J. Eriksson, E. Lundgren, J.N. Andersen, J. Weissenrieder, W. Seifert, The influence of lysine on InP(001) surface ordering and nanowire growth. Nanotechnology 16(10), 2354–2359 (2005)

    Article  CAS  Google Scholar 

  12. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)

    Article  CAS  Google Scholar 

  13. M.T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M.H. Magnusson, K. Deppert, L. Samuelson, Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quantum Electron. 17, 1050 (2011)

    Article  CAS  Google Scholar 

  14. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M.H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H.Q. Xu, L. Samuelson, K. Deppert, M.T. Borgström, InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339, 1057 (2013)

    Google Scholar 

  15. I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J.P. Gilboy, C. Sundvall, A. Dahlgren, K.E. Svensson, N. Anttu, M.T. Bjork, L. Samuelson, A GaAs nanowire array solar cell with 15.3% efficiency at 1 Sun. IEEE J. Photovolt. 6(1), 185–190 (2016)

    Google Scholar 

  16. G. Otnes, E. Barrigón, Ch. Sundvall, K.E. Svensson, M. Heurlin, G. Siefer, L. Samuelson, I. Åberg, M.T. Borgström, Understanding InP nanowire array solar cell performance by nanoprobe-enabled single nanowire measurements. Nano Lett. 18(5), 3038–3046 (2018)

    Article  CAS  Google Scholar 

  17. E. Memisevic, J. Svensson, M. Hellenbrand, E. Lind, L.-E. Wernersson, Scaling of vertical InAs–GaSb nanowire tunneling field-effect transistors on Si. IEEE Electron Device Lett. 37, 549–552 (2016)

    Article  CAS  Google Scholar 

  18. E. Memisevic, J. Svensson, E. Lind, L.-E. Wernersson, Vertical nanowire TFETs with channel diameter down to 10 nm and point S-MIN of 35 mV/decade. IEEE Electron Device Lett. 39(7), 1089–1091 (2018)

    Article  CAS  Google Scholar 

  19. B. Monemar, B.J. Ohlsson, N.F. Gardner, L. Samuelson, Nanowire-based visible light emitters, present status and outlook. Semicond. Semimet. 94, 227–271 (2016)

    Article  CAS  Google Scholar 

  20. S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, K.A. Dick, A General approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow. Nano Lett. 13, 4099 (2013)

    Article  CAS  Google Scholar 

  21. D.L. Dheeraj, G. Patriarche, H. Zhou, T.B. Hoang, A.F. Moses, S. Gronsberg, A.T.J. van Helvoort, B.-O. Fimland, H. Weman, Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts. Nano Lett. 8(12), 4459–4463 (2008)

    Google Scholar 

  22. Ph. Ebert, Nano-scale properties of defects in compound semiconductor surfaces. Surf. Sci. Rep. 33, 121–303 (1999)

    Article  CAS  Google Scholar 

  23. A. Mikkelsen, N. Sköld, L. Ouattara, M. Borgström, J.N. Andersen, L. Samuelson, W. Seifert, E. Lundgren, Direct imaging of the atomic structure inside a nanowire by scanning tunneling microscopy. Nat. Mater. 3, 519 (2004)

    Article  CAS  Google Scholar 

  24. A. Mikkelsen, E. Lundgren, Cross-sectional scanning tunneling microscopy studies of novel III–V semiconductor structures. Prog. Surf. Sci. 80, 1 (2005)

    Article  CAS  Google Scholar 

  25. R. Timm, J. Grabowski, H. Eisele, A. Lenz, S.K. Becker, L. Müller-Kirsch, K. Pötschke, U.W. Pohl, D. Bimberg, M. Dähne, Formation and atomic structure of GaSb nanostructures in GaAs studied by cross-sectional scanning tunneling microscopy. Phys. E 26, 231 (2005)

    Article  CAS  Google Scholar 

  26. R. Timm, H. Eisele, A. Lenz, L. Ivanova, G. Balakrishnan, D.L. Huffaker, M. Dähne, Self-organized formation of GaSb/GaAs quantum rings. Phys. Rev. Lett. 101, 256101 (2008)

    Article  CAS  Google Scholar 

  27. J. Kawasaki, R. Timm, K.T. Delaney, E. Lundgren, A. Mikkelsen, C.J. Palmstrom, Local density of states and interface effects in semimetallic ErAs nanoparticles embedded in GaAs. Phys. Rev. Lett. 107, 036806 (2011)

    Article  CAS  Google Scholar 

  28. E. Hilner, U. Håkanson, L.E. Fröberg, M. Karlsson, P. Kratzer, E. Lundgren, L. Samuelson, A. Mikkelsen, Direct atomic scale imaging of III–V nanowire surfaces. Nano Lett. 8, 3978 (2008)

    Article  CAS  Google Scholar 

  29. M. Hjort, S. Lehmann, J. Knutsson, R. Timm, D. Jacobsson, E. Lundgren, K.A. Dick, A. Mikkelsen, Direct imaging of atomic scale structure and electronic properties of GaAs wurtzite and zinc blende nanowire surfaces. Nano Lett. 13, 4492 (2013)

    Article  CAS  Google Scholar 

  30. M. Hjort, S. Lehmann, J. Knutsson, A.A. Zakharov, Y.A. Du, S. Sakong, R. Timm, G. Nylund, E. Lundgren, P. Kratzer, K.A. Dick, A. Mikkelsen, Electronic and structural differences between wurtzite and zinc blende InAs nanowire surfaces: experiment and theory. ACS Nano 8, 12346 (2014). https://pubs.acs.org/doi/10.1021/nn504795v

  31. J.V. Knutsson, S. Lehmann, M. Hjort, E. Lundgren, K.A. Dick, R. Timm, A. Mikkelsen, Electronic structure cahnges due to crystal phase switching at the atomic scale limit. ACS Nano 11, 10519–10528 (2017)

    Article  CAS  Google Scholar 

  32. M. Hjort, J.V. Knutsson, B. Mandl, K. Deppert, E. Lundgren, R. Timm, A. Mikkelsen, Surface morphology of Au-free grown nanowires after native oxide removal. Nanoscale 7, 9998 (2015)

    Article  CAS  Google Scholar 

  33. M. Hjort, J. Wallentin, R. Timm, A.A. Zakharov, U. Håkanson, J.N. Andersen, E. Lundgren, L. Samuelson, M.T. Borgström, A. Mikkelsen, Surface chemistry, structure, and electronic properties from microns to the atomic scale of axially doped semiconductor nanowires. ACS Nano 6(11), 9679 (2012)

    Google Scholar 

  34. P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotechnol. 4, 50–55 (2009)

    Article  CAS  Google Scholar 

  35. J.V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K.A. Dick, R. Timm, A. Mikkelsen, Atomic scale surface structure and morphology of InAs nanowire crystal superlattices: the effect of epitaxial overgrowth. ACS Appl. Mater. Interfaces 7, 5748–5755 (2015). https://pubs.acs.org/doi/10.1021/am507931z

  36. L. Ouattara, A. Mikkelsen, N. Sköld, J. Eriksson, T. Knaapen, E. Cavar, W. Seifert, L. Samuelson, E. Lundgren, GaAs/AlGaAs nanowire heterostructures studied by scanning tunneling microscopy. Nano Lett. 7(9), 2859–2864 (2007)

    Article  CAS  Google Scholar 

  37. E. Uccelli, J. Arbiol, J.R. Morante, A. Fontcuberta i Morral, InAs quantum dot arrays decorating the facets of GaAs nanowires. ACS Nano 4(10), 5985–5993 (2010)

    Google Scholar 

  38. M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D.D. O'Regan, J.W. Luo, B. Ketterer, S. Conesa-Boj, A.V. Kuhlmann, J. Houel, E. Russo-Averchi, J.R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R.J. Warburton, A. Fontcuberta i Morral, Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 12, 439–444 (2013)

    Google Scholar 

  39. A. Mikkelsen, N. Sköld, L. Ouattara, E. Lundgren, Nanowire growth and dopants studied by cross-sectional scanning tunnelling microscopy. Nanotechnology 17, S362–S368 (2006)

    Article  CAS  Google Scholar 

  40. R. Timm, M. Hjort, A. Fian, B.M. Borg, C. Thelander, J.N. Andersen, L.-E. Wernersson, A. Mikkelsen, Interface composition of InAs nanowires with Al2O3 and HfO2 thin films. Appl. Phys. Lett. 99, 222907 (2011)

    Article  CAS  Google Scholar 

  41. J.L. Webb, J.V. Knutsson, M. Hjort, S.G. Ghalamestani, K.A. Dick, R. Timm, A. Mikkelsen, Electrical and surface properties of InAs/InSb nanowires cleaned by atomic hydrogen. Nano Lett. 15, 4865 (2015)

    Article  CAS  Google Scholar 

  42. A.A. Zakharov, A. Mikkelsen, J.N. Andersen, Recent advances in imaging of properties and growth of low dimensional structures for photonics and electronics by XPEEM. J. Electron Spectrosc. Relat. Phenom. 185, 417 (2012)

    Article  CAS  Google Scholar 

  43. E. Bauer, Surface Microscopy with Low Energy Electrons (Springer, New York, 2014)

    Book  Google Scholar 

  44. M. Hjort, P. Kratzer, S. Lehmann, S.J. Patel, K.A. Dick, C.J. Palmstrom, R. Timm, A. Mikkelsen, Crystal structure induced preferential surface alloying of Sb on wurtzite/zinc blende GaAs nanowires. Nano Lett. 17, 3634 (2017)

    Article  CAS  Google Scholar 

  45. T. Xu, M.J. Wei, P. Capiod, A. Diaz Alvarez, X.L. Han, D. Troadec, J.P. Nys, M. Berthe, I. Lefebvre, G. Pariarche, S.R. Plissard, P. Caroff, Ph. Ebert, B. Grandidier, Type I band alignment in GaAs81Sb19/GaAs core-shell nanowires. Appl. Phys. Lett. 107, 112102 (2015)

    Google Scholar 

  46. J. Knutsson, Atomic Scale Characterization of III–V Nanowire Surfaces. Lund University, Faculty of Science, Lund, Sweden (2017)

    Google Scholar 

  47. J.P. Ibe, P.P. Bey Jr., S.L. Brandow, R.A. Brizzolara, N.A. Burnham, D.P. DiLella, K.P. Lee, C.R.K. Marrian, R.J. Colton, On the electrochemical etching of tips for scanning tunneling microscopy. J. Vac. Sci. Technol. A 8, 3570 (1990)

    Article  CAS  Google Scholar 

  48. A. Fian, M. Lexholm, R. Timm, B. Mandl, U. Håkanson, D. Hessman, E. Lundgren, L. Samuelson, A. Mikkelsen, New flexible toolbox for nanomechanical measurements with extreme precision and at very high frequencies. Nano Lett. 10, 3893 (2010)

    Article  CAS  Google Scholar 

  49. R. Timm, O. Persson, D.L.J. Engberg, A. Fian, J.L. Webb, J. Wallentin, A. Jönsson, M.T. Borgström, L. Samuleons, A. Mikkelsen, Current-voltage characterization of individual as-grown nanowires using a scanning tunneling microscope. Nano Lett. 13, 5182 (2013)

    Article  CAS  Google Scholar 

  50. D.B. Suyatin, V. Jain, V.A. Nebol'sin, J. Trägårdh, M.E. Messing, J.B. Wagner, O. Persson, R. Timm, A. Mikkelsen, I. Maximov, L. Samuelson, H. Pettersson, Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi level unpinning. To be published (2013)

    Google Scholar 

  51. O. Ueda, Reliability issues in III–V compound semiconductor devices: optical devices and GaAs-based HBTs. Microelectron. Reliab. 39, 1839–1855 (1999)

    Article  Google Scholar 

  52. J.J. Yang, J.J. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  CAS  Google Scholar 

  53. J.L. Webb, J. Knutsson, M. Hjort, S.R. McKibbin, S. Lehmann, C. Thelander, K.A. Dick, R. Timm, A. Mikkelsen, Imaging atomic scale dynamics on III–V nanowire surfaces during electrical operation. Nat. Sci. Rep. 7, 12790 (2017)

    CAS  Google Scholar 

  54. O. Persson, J.L. Webb, K.A. Dick, C. Thelander, A. Mikkelsen, R. Timm, Scanning tunneling spectroscopy on InAs–GaSb Esaki diode nanowire devices during operation. Nano Lett. 15, 3684–3691 (2015)

    Article  CAS  Google Scholar 

  55. J.L. Webb, O. Persson, K.A. Dick, C. Thelander, R. Timm, A. Mikkelsen, High resolution scanning gate microscopy measurements on InAs/GaSb nanowire Esaki diode devices. Nano Res. 7, 877 (2014)

    Article  CAS  Google Scholar 

  56. R. Timm, A. Fian, M. Hjort, C. Thelander, E. Lind, J.N. Andersen, L.-E. Wernersson, A. Mikkelsen, Reduction of native oxides on InAs by atomic layer deposited Al2O3 and HfO2. Appl. Phys. Lett. 97, 132904 (2010)

    Article  CAS  Google Scholar 

  57. A. Troian, J.V. Knutsson, S.R. McKibbin, S. Yngman, A.S. Babadi, L.-E. Wernersson, A. Mikkelsen, R. Timm, InAs-oxide interface composition and stability upon thermal oxidation and high-k atomic layer deposition. AIP Adv. 8, 125227 (2018)

    Article  CAS  Google Scholar 

  58. A.A. Zakharov, E. Mårsell, E. Hilner, R. Timm, J.N. Andersen, E. Lundgren, A. Mikkelsen, Manipulating the dynamics of self-propelled gallium droplets by gold nanoparticles and nanoscale surface morphology. ACS Nano 9, 5422 (2015)

    Article  CAS  Google Scholar 

  59. E. Hilner, A.A. Zakharov, K. Schulte, P. Kratzer, J.N. Andersen, E. Lundgren, A. Mikkelsen, Ordering of the nanoscale step morphology as a mechanism for droplet self-propulsion. Nano Lett. 9, 2710 (2009)

    Article  CAS  Google Scholar 

  60. V. Martinelli, L. Siller, M.G. Betti, C. Mariani, U. del Pennino, Surface modification of InAs(110) surface by low energy ion sputtering. Surf. Sci. 391(1–3), 73–80 (1997)

    Article  CAS  Google Scholar 

  61. M. Schnedler, I. Lefebvre, T. Xu, V. Portz, G. Patriarche, J.-P. Nys, S.R. Plissard, P. Caroff, M. Berthe, H. Eisele, R.E. Dunin-Borkowski, Ph. Ebert, B. Grandidier, Lazarevicite-type short-range ordering in ternary III–V nanowires. Phys. Rev. B 94, 195306 (2019)

    Article  Google Scholar 

  62. J.K. Kawasaki, A. Sharan, L.I.M. Johansson, M. Hjort, R. Timm, B. Thiagarajan, B.D. Schultz, A. Mikkelsen, A. Janotti, C.J. Palmstrom, A simple electron counting model for half-Heusler surfaces. Sci. Adv. 4, EEAR5832 (2018)

    Google Scholar 

  63. B. Mandl, J. Stangl, T. Mårtensson, A. Mikkelsen, J. Eriksson, L.S. Karlsson, G. Bauer, L. Samuelson, W. Seifert, Au-free epitaxial growth of InAs nanowires. Nano Lett. 6, 1817–1821 (2006)

    Article  CAS  Google Scholar 

  64. N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, M. Borgström, Absorption of light in InP nanowire arrays. Nano Res. 7(6), 816–823 (2014)

    Article  CAS  Google Scholar 

  65. L.-E. Wernersson, Narrow gap nanowires: from nanotechnology to RF-circuits on Si. J. Appl. Phys. 117(11), 112810 (2015)

    Google Scholar 

  66. H. Riel, L.-E. Wernersson, M. Hong, J.A. del Alamo, III–V compound semiconductor transistors—from planar to nanowire structures. MRS Bull. 39(8), 668–677 (2014)

    Google Scholar 

  67. Y. Li, F. Qian, J. Xiang, Ch.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today 9(10), 18 (2006)

    Google Scholar 

  68. R.R. LaPierre, A.C.E. Chia, S.J. Gibson, C.M. Haapamaki, J. Boulanger, R. Yee, P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, K.M.A. Rahman, III–V nanowire photovoltaics: review of design for high efficiency. Phys. Status Solidi (RRL) 7(10), 815–830 (2013)

    Google Scholar 

  69. B. Khanbabaee, G. Bussone, J.V. Knutsson, I. Geijselaers, C.E. Pryor, T. Rieger, N. Demarina, D. Grützmacher, M.I. Lepsa, R. Timm, U. Pietsch, Band bending at the heterointerface of GaAs/InAs core/shell nanowires monitored by synchrotron X-ray photoelectron spectroscopy. J. Appl. Phys. 120, 145703 (2016)

    Article  CAS  Google Scholar 

  70. S.A. Dayeh, D. Susac, K.L. Kavanagh, E.T. Yu, D. Wang, Structural and room-temperature transport properties of zinc blende and wurtzite InAs nanowires. Adv. Funct. Mater. 19(13), 2102 (2009)

    Google Scholar 

  71. J. Trägårdh, A.I. Persson, J.B. Wagner, D. Hessman, L. Samuelson, Measurements of the band gap of wurtzite InAs1-xPx nanowires using photocurrent spectroscopy. J. Appl. Phys. 101(12), 123701 (2007)

    Google Scholar 

  72. A. De, C.E. Pryor, Predicted band structures of III–V semiconductors in the wurtzite phase. Phys. Rev. B 81, 155210 (2010)

    Article  CAS  Google Scholar 

  73. R.M. Feenstra, Tunneling spectroscopy of the (110)-surface of direct-gap III–V semiconductors. Phys. Rev. B 50, 4561–1570 (1994)

    Article  CAS  Google Scholar 

  74. O. Persson, L. Kral, S. Lehmann, C. Thelander, R. Timm, The effect of surface oxide removal on InAs nanowires of both wurtzite and zinc blende structure, to be published

    Google Scholar 

  75. R.M. Wallace, P.C. McIntyre, J. Kim, Y. Nishi, Atomic layer deposition of dielectrics on Ge and III–V materials for ultrahigh performance transistors. MRS Bull. 34, 493 (2009)

    Article  CAS  Google Scholar 

  76. T. Gougousi, Atomic layer deposition of high-k dielectrics on III–V semiconductor surfaces. Prog. Cryst. Growth Charact. Mater. 62(4), 1–21 (2016)

    Article  CAS  Google Scholar 

  77. C.L. Hinkle, A.M. Sonnet, E.M. Vogel, S. McDonnell, G.J. Hughes, M. Milojevic, B. Lee, F.S. Aguirre-Tostado, K.J. Choi, H.C. Kim, J. Kim, R.M. Wallace, GaAs interfacial self-cleaning by atomic layer deposition. Appl. Phys. Lett. 92, 071901 (2008)

    Article  CAS  Google Scholar 

  78. R. Timm, M. Hjort, A. Fian, C. Thelander, E. Lind, J.N. Andersen, L.-E. Wernersson, A. Mikkelsen, Interface composition of atomic layer deposited HfO2 and Al2O3 thin films on InAs studied by X-ray photoemission spectroscopy. Microelectron. Eng. 88, 1091 (2011)

    Article  CAS  Google Scholar 

  79. S.M. George, Atomic layer deposition: an overview. Chem. Rev. 110, 111 (2010)

    Article  CAS  Google Scholar 

  80. S. Elliott, Atomic-scale simulation of ALD chemistry. Semicond. Sci. Technol. 27, 074008 (2012)

    Article  CAS  Google Scholar 

  81. R. Timm, A.R. Head, S. Yngman, J.V. Knutsson, M. Hjort, S.R. McKibbin, A. Troian, Ol. Persson, S. Urpelainen, J. Knudsen, J. Schnadt, A. Mikkelsen, Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide. Nat. Commun. 9, 1412 (2018)

    Google Scholar 

  82. H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P.W. Leu, K. Ganapathi, E. Plis, H.S. Kim, S.-Y. Chen, M. Madsen, A.C. Ford, Y.-L. Chueh, S. Krishna, S. Salahuddin, A. Javey, Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468, 286 (2010)

    Article  CAS  Google Scholar 

  83. J. Wu, E. Lind, R. Timm, M. Hjort, A. Mikkelsen, L.-E. Wernersson, Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substrates. Appl. Phys. Lett. 100, 132905 (2012)

    Article  CAS  Google Scholar 

  84. J. Wu, A.S. Babadi, D. Jacobsson, J. Colvin, S. Yngman, R. Timm, E. Lind, L.-E. Wernersson, Low trap density in InAs/High-k nanowire gate stacks with optimized growth and doping conditions. Nano Lett. 16, 2418–2425 (2016)

    Article  CAS  Google Scholar 

  85. F. Patolsky, C.M. Lieber, Nanowire nanosensors. Mater. Today 8(4), 20–28 (2005)

    Article  CAS  Google Scholar 

  86. P. Offermans, M. Crego-Calama, S.H. Brongersma, Gas detection with vertical InAs nanowire arrays. Nano Lett. 10(7), 2412–2415 (2010)

    Google Scholar 

  87. J. Du, D. Liang, H. Tang, X.P.A. Gao, InAs nanowire transistors as gas sensor and the response mechanism. Nano Lett. 9(12), 4348–4351 (2009)

    Article  CAS  Google Scholar 

  88. D.J. Carrad, A.B. Mostert, A.R. Ullah, A.M. Burke, H.J. Joyce, H.H. Tan, C. Jagadish, P. Krogstrup, J. Nygård, P. Meredith, A.P. Micolich, Hybrid nanowire ion-to-electron transducers for integrated bioelectronic circuitry. Nano Lett. 17(2), 827–833 (2017)

    Article  CAS  Google Scholar 

  89. G. Signorello, S. Sant, N. Bologna, M. Schraff, U. Drechsler, H. Schmid, S. Wirths, M.D. Rossell, A. Schenk, H. Riel, Manipulating surface states of III–V nanowires with uniaxial stress. Nano Lett. 17(5), 2816–2814 (2017)

    Article  CAS  Google Scholar 

  90. D. Dzhigaev, A. Shabalin, T. Stankevic, U. Lorenz, R.P. Kurta, F. Seiboth, J. Wallentin, A. Singer, S. Lazarev, O.M. Yefanov, M. Borgström, M.N. Strikhanov, L. Samuelson, G. Falkenberg, C.G. Schroer, A. Mikkelsen, R. Feidenhans’l, I.A. Vartanyants, Bragg coherent X-ray diffractive imaging of a single indium phosphide nanowire. J. Opt. 18, 064007 (2016)

    Article  CAS  Google Scholar 

  91. D. Dzhigaev, T. Stankevic, Z. Bi, S. Lazarev, M. Rose, A. Shabalin, J. Reinhardt, A. Mikkelsen, L. Samuelson, G. Falkenberg, R. Feidenhans’l, I.A. Vartanyants, X-ray Bragg ptychography on a single InGaN/GaN core-shell nanowire. ACS Nano 11(7), 6605–6611 (2017)

    Article  CAS  Google Scholar 

  92. T. Stankevic, E. Hilner, F. Seiboth, R. Ciechonski, G. Vescovi, O. Kryliouk, U. Johansson, L. Samuelson, G. Wellenreuther, G. Falkenberg, R. Feidenhans’l, A. Mikkelsen, Fast strain mapping of nanowire light-emitting diodes using nanofocused X-ray beams. ACS Nano 9, 6978 (2015)

    Article  CAS  Google Scholar 

  93. A. Diaz, C. Mocuta, J. Stangl, B. Mandl, C. David, J. Vila-Comamala, V. Chamard, T.H. Metzger, G. Bauer, Coherent diffraction imaging of a single epitaxial InAs nanowire using a focused X-ray beam. Phys. Rev. B 79, 125324 (2009)

    Article  CAS  Google Scholar 

  94. V. Favre-Nicolin, F. Mastropietro, J. Eymery, D. Camacho, Y.M. Niquet, B.M. Borg, M.E. Messing, L.-E. Wernersson, R.E. Algra, E.P.A.M. Bakkers, Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging. New J. Phys. 12, 035013 (2010)

    Article  CAS  Google Scholar 

  95. A. Mikkelsen, M. Borg, J.H. Petersen, J.N. Andersen, D.L. Adams, Unusual multilayer surface alloy: Al(100)-c(2x2)-2Li. Phys. Rev. Lett. 87, 096102 (2001)

    Article  CAS  Google Scholar 

  96. M. Borg, A. Mikkelsen, M. Birgersson, M. Smedh, E. Lundgren, D.L. Adams, C.-O. Almbladh, J.N. Andersen, Structure and formation of the Al(100)-(root 5 x root 5) R27 degrees-Na phase: a LEED, DFT and HRCLS study. Surf. Sci. 515(2–3), 267–280 (2002)

    Article  CAS  Google Scholar 

  97. M. Hjort, M. Bauer, S. Gunnarsson, E. Mårsell, A.A. Zakharov, G. Karlsson, E. Sanfins, Ch.N. Prinz, R. Wallenberg, T. Cedervall, A. Mikkelsen, Electron microscopy imaging of proteins on gallium phosphide semiconductor nanowires. Nanoscale 8, 3936–3943 (2016)

    Article  CAS  Google Scholar 

  98. G. Hammarin, H. Persson, A.P. Dabkowska, Ch.N. Prinz, Enhanced laminin adsorption on nanowires compared to flat surfaces. Colloids Surf. B 122, 85–89 (2014)

    Article  CAS  Google Scholar 

  99. E. Mårsell, E. Boström, A. Harth, A. Losquin, C. Guo, Y.-C. Cheng, E. Lorek, S. Lehmann, G. Nylund, M. Stankovski, C.L. Arnold, M. Miranda, K.A. Dick, J. Mauritsson, C. Verdozzi, A. L’Huillier, A. Mikkelsen, Spatial control of multiphoton electron excitations in InAs nanowires by varying crystal phase and light polarization. Nano Lett. 18(2), 907–915 (2018)

    Article  CAS  Google Scholar 

  100. D. Verardo, F.W. Lindberg, N. Anttu, C.S. Niman, M. Lard, A.P. Dabkowska, T. Nylander, A. Månsson, Ch.N. Prinz, H. Linke, Nanowires for biosensing: lightguiding of fluorescence as a function of diameter and wavelength. Nano Lett. 18(8), 4796–4802 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge Emelie Hilner, Martin Hjort, Johan Knutsson, Sahil Patel, Olof Persson, Andrea Troian, James Webb, Sofie Yngman, Magnus Borgström, Kimberly Dick Thelander, Lars-Erik Wernersson, Sepideh Gorji Ghalamestani, Sarah McKibbin, Sebastian Lehmann, Bernhard Mandl, Gustav Nylund, Chris Palmstrom, Jesper Wallentin, Edvin Lundgren and Lars Samuelson for experimental work, sample growth, processing and many valuable discussions. This work was performed within the NanoLund Center for Nanoscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Mikkelsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Timm, R., Mikkelsen, A. (2021). Surface Functionalization of III–V Nanowires. In: Fukata, N., Rurali, R. (eds) Fundamental Properties of Semiconductor Nanowires. Springer, Singapore. https://doi.org/10.1007/978-981-15-9050-4_2

Download citation

Publish with us

Policies and ethics