Skip to main content
Log in

Electromagnetic metamaterial simulations using a GPU-accelerated FDTD method

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Metamaterials composed of artificial subwavelength structures exhibit extraordinary properties that cannot be found in nature. Designing artificial structures having exceptional properties plays a pivotal role in current metamaterial research. We present a new numerical simulation scheme for metamaterial research. The scheme is based on a graphic processing unit (GPU)-accelerated finite-difference time-domain (FDTD) method. The FDTD computation can be significantly accelerated when GPUs are used instead of only central processing units (CPUs). We explain how the fast FDTD simulation of large-scale metamaterials can be achieved through communication optimization in a heterogeneous CPU/GPU-based computer cluster. Our method also includes various advanced FDTD techniques: the non-uniform grid technique, the total-field/scattered-field (TFSF) technique, the auxiliary field technique for dispersive materials, the running discrete Fourier transform, and the complex structure setting. We demonstrate the power of our new FDTD simulation scheme by simulating the negative refraction of light in a coaxial waveguide metamaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yee, IEEE Trans. 14, 302 (1966).

    MATH  ADS  Google Scholar 

  2. S. Taflove and S. Hagness, The Finite-Difference Time- Domain Method, 3rd ed. (Artech House, Boston and London, 2005).

    Google Scholar 

  3. J. Choe, J. Kang, D. Kim and Q. Park, Opt. Express 20, 6521 (2012).

    Article  ADS  Google Scholar 

  4. S. Yoo and Q.-H. Park, Opt. Express 20, 16480 (2012).

    Article  ADS  Google Scholar 

  5. W. Choi, Q.-H. Park and W. Choi, Opt. Express 20, 20721 (2012).

    Article  ADS  Google Scholar 

  6. K.-H. Kim and Q.-H. Park, Sci. Rep. 3, 1062 (2013).

    ADS  Google Scholar 

  7. J.-H. Kang and Q.-H. Park, Sci. Rep. 3, 1 (2013).

    Google Scholar 

  8. S. Yoo, M. Cho and Q.-H. Park, Phys. Rev. B 89, 161405 (2014).

    Article  ADS  Google Scholar 

  9. S. Yoo and Q.-H. Park, Phys. Rev. Lett. 114, 203003 (2015).

    Article  ADS  Google Scholar 

  10. S. E. Krakiwsky, L. E. Turner and M. M. Okoniewski, Proc. IEEE MTT-S Int. Microw. Symp. Dig. 2, 1033 (2004).

    Google Scholar 

  11. Nano Optics Lab. http://nol.korea.ac.kr/.

  12. KEMP project page in Sourceforge. http://kemp.sourceforge. net/.

  13. K.-H. Kim, K. Kim and Q.-H. Park, Comput. Phys. Commun. 182, 1201 (2011).

    Article  MATH  ADS  Google Scholar 

  14. K.-H. Kim and Q.-H. Park, Comput. Phys. Commun. 183, 2364 (2012).

    Article  ADS  Google Scholar 

  15. A. Vial and T. Laroche, J. Phys. D, Appl. Phys. 40, 7152 (2007).

    Article  ADS  Google Scholar 

  16. J. P. Berenger, J. Comput. Phys. 114, 185 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. J. A. Roden and S. D. Gedney, Microw. Opt. Technol. Lett. 27, 334 (2000).

    Article  Google Scholar 

  18. S. P. Burgos, R. deWaele, A. Polman and H. A. Atwater, Nat. Mater. 9, 407 (2010).

    Article  ADS  Google Scholar 

  19. P. B. Johnson and R. W. Christry, Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

  20. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985).

    Google Scholar 

  21. D. R. Smith, D. C. Vier, T. Koschny and C. M. Soukoulis, Phys. Rev. E 71, 036617 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q-Han Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seok, MS., Lee, MG., Yoo, S. et al. Electromagnetic metamaterial simulations using a GPU-accelerated FDTD method. Journal of the Korean Physical Society 67, 2026–2032 (2015). https://doi.org/10.3938/jkps.67.2026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.2026

Keywords

Navigation