Skip to main content
Log in

Effects of oxygen plasma post-treatment on the structural, electrical and optical properties of Ga-doped ZnO films

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The effects of O2 plasma post-treatment on the electrical behavior of Ga-doped ZnO (GZO) films were characterized. GZO films were spin-coated onto glass and post-treated in an O2 plasma at a 0- to 100-W radio-frequency (RF) power and a 0- to 60-s process times in a capacitively-coupled plasma system. Atomic force microscopy, X-ray diffraction, Hall, UV-Vis spectroscopy, photoluminescence, and photocurrent measurements were used to study the influence of the O2 plasma post-treatment on the surface morphological, electrical, and optical properties of the GZO films. With increasing RF power during the O2 plasma post-treatment, the electrical properties of the GZO films improved significantly. The carrier concentration of the GZO films increased by a factor of approximately 52 from 5.89 × 1017 to 3.08 × 1019 cm -3 for a 30-s O2 plasma exposure at 100-W RF power. The electrical improvement was attributed to the GZO films’ high crystallinity, caused by the O2 plasma post-treatment reducing the number of oxygen defects. The plasma treatment had little effect on the transmittance of the GZO films. The optical band gap of the film increased with increasing RF power. An enhanced UV photocurrent was obtained for the GZO film after a 30-s O2 plasma post-treatment at a 100-W RF power, and the recovery was slow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. G. Lewis and D. C. Paine, MRS Bull. 25, 22 (2000).

    Article  Google Scholar 

  2. T. Minami, H. Sato, T. Sonoda, H. Nanto and S. Takata, Thin Solid Films 171, 307 (1989).

    Article  ADS  Google Scholar 

  3. E. Fortunato, P. Barquinha, A. Pimentel, A. GonCalves, A. Marques, L. Pereira and R. Martins, Thin Solid Films 487, 205 (2005).

    Article  ADS  Google Scholar 

  4. M. Gabas et al., J. Appl. Phys. 113, 163709 (2013).

    Article  ADS  Google Scholar 

  5. Y. S. Jung, H. W. Choi, Y. S. Park and K. H. Kim, J. Korean Phys. Soc. 57, 1909 (2010).

    Article  Google Scholar 

  6. O. Nakagawara, Y. Kishimoto, H. Seto, Y. Koshido, Y. Yoshino and T. Makino, Appl. Phys. Lett. 89, 091904 (2006).

    Article  ADS  Google Scholar 

  7. V. Assuncão, E. Fortunato, A. Marques, H. Águas, I. Ferreira, M. E. V. Costa and R. Martins, Thin Solid Films 427, 401 (2003).

    Article  ADS  Google Scholar 

  8. K. Ellmer, A. Klein and B. Rech, Transparent conductive zinc oxide (Springer, New York, 2008), Chap. 6, p. 235.

    Book  Google Scholar 

  9. S. S. Shinde and K. Y. Rajpure, Appl. Surf. Sci. 257, 9595 (2011).

    Article  ADS  Google Scholar 

  10. J. A. Sans, G. Martinez-Criado, J. Pellicer-Porres, J. F. Sanchez-Royo and A. Segura, AIP Conf. Proc. 1199, 103 (2010).

    Article  ADS  Google Scholar 

  11. M. Caglar, S. Ilican and Y. Caglar, Thin Solid Films 517, 5023 (2009).

    Article  ADS  Google Scholar 

  12. C. Y. Tsay and W. C. Lee, Curr. Appl. Phys. 13, 60 (2013).

    Article  ADS  Google Scholar 

  13. C. Y. Tsay and S. H. Yu, J. Alloys Compd. 596, 145 (2014).

    Article  Google Scholar 

  14. J. W. Lee, J. K. Kim, J. H. Lee, Y. W. Joo, Y. H. Park, H. S. Noh and S. J. Pearton, J. Vac. Sci. Technol. B 27, 681 (2009).

    Article  Google Scholar 

  15. J. Zhang, H. Yang, Q. Zhang, H. Jiang, J. Luo, J. Zhou and S. Dong, Appl. Phys. A 116, 663 (2014).

    Article  ADS  Google Scholar 

  16. H. B. Profijt, S. E. Potts, M. V. Sanden and W. Kessels, J. Vac. Sci. Technol. A 29, 050801 (2011).

    Article  Google Scholar 

  17. J. Zhang, H. Yang, Q. L. Zhang, S. R. Dong and J. K. Luo, Appl. Surf. Sci. 282, 390 (2013).

    Article  ADS  Google Scholar 

  18. L. P. Peng, L. Fang, X. F. Yang, H. B. Ruan, Y. J. Li, Q. L. Huang and C. Y. Kong, Phys. E 41, 1819 (2009).

    Article  Google Scholar 

  19. B. D. Callity and S. R. Stock, Elements of X-ray Diffraction (Addison, Wesley, London, 1959), Chap. 3, p. 99.

    Google Scholar 

  20. M. C. Jun, S. U. Park and J. H. Koh, Nanoscale Res. Lett. 7, 639 (2012).

    Article  ADS  Google Scholar 

  21. P. Agoston and K. Albe, Phys. Rev. Lett. 103, 245501 (2009).

    Article  ADS  Google Scholar 

  22. S. H. Lee and D. Paine, Appl. Phys. Lett. 102, 052101 (2013).

    Article  ADS  Google Scholar 

  23. S. Kim, H. S. Yoon, D. Y. Kim, S. O. Kim and J. Y. Leem, Opt. Mater. 35, 2418 (2013).

    Article  ADS  Google Scholar 

  24. L. Gong, J. Lu and Z. Ye, J.Mater. Sci.: Mater. Electron. 24, 148 (2013).

    Google Scholar 

  25. M. S. Kim, S. Kim, G. Nam, D. Y. Lee and J. Y. Leem, Opt. Mater. 34, 1543 (2012).

    Article  ADS  Google Scholar 

  26. Q. H. Li, T. Gao, Y. G. Wang and T. H. Wang, Appl. Phys. Lett. 86, 123117 (2005).

    Article  ADS  Google Scholar 

  27. B. Saravanakumar, R. Mohan, K. Thiyagarajan and S. J. Kim, J. Alloys Compd. 580, 538 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jewon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, E., Kim, S., Heo, S. et al. Effects of oxygen plasma post-treatment on the structural, electrical and optical properties of Ga-doped ZnO films. Journal of the Korean Physical Society 67, 1767–1772 (2015). https://doi.org/10.3938/jkps.67.1767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1767

Keywords

Navigation