Skip to main content
Log in

Effects of Zn amount on the properties of Zn-Cu2O composite films grown for PEC photoelectrodes by using electrochemical deposition

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 29 November 2015

Abstract

In this study, Zn-Cu2O composite films were grown on fluorine-doped tin-oxide (FTO) substrates by using the electrochemical deposition method. Various amounts of Zinc (Zn) were added to grow the Zn-Cu2O composite films. We analyzed the morphological, structural, optical energy band gap and photocurrent density properties of the Zn-Cu2O composite films by using various measurements such as field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), UV-visible spectrophotometry and potentiostat/galvanostat measurements, respectively. As a result, the highest photocurrent density value of −4.04 mA/cm2 was obtained for the 30-wt% sample, which had the lowest Cu2O (111)/ ZnO (101) XRD peak intensity ratio. The highest photocurrent density value from the 30-wt% sample was approximately 2.35 times higher than that from the non-composite Cu2O film (0-wt% sample). From this study, we found that adding Zn could improve the photocurrent values of Zn-Cu2O composite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Qian, G. Wang and Y. Li, Nano Lett. 10, 4686 (2010).

    Article  ADS  Google Scholar 

  2. C. Chiang, J. Epstein, A. Brown, J. N. Munday, J. N. Culver and S. Ehrman, Nano Lett. 12, 6005 (2012).

    Article  ADS  Google Scholar 

  3. J. Cui and U. J. Gibson, J. Phys. Chem. C 114, 6408 (2010).

    Article  Google Scholar 

  4. K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul and T. Sakurai, Solar Energy 80, 715 (2006).

    Article  ADS  Google Scholar 

  5. Z. Zhang, R. Dua, L. Zhang, H. Zhu, H. Zhang and P. Wang, ACS Nano. 7, 1709 (2013).

    Article  Google Scholar 

  6. M. Grätzel, Nature. 414, 338 (2001).

    Article  ADS  Google Scholar 

  7. X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun and Y. Zhu, Langmuir 29, 3097 (2013).

    Article  Google Scholar 

  8. I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo and X. Zheng, Nano Lett. 11, 4978 (2011).

    Article  ADS  Google Scholar 

  9. E. Thimsen, F. Le Formal, M. Graätzel and S. C. Warren, Nano Lett. 11, 35 (2010).

    Article  ADS  Google Scholar 

  10. J. Su, X. Feng, J. D. Sloppy, L. Guo and C.A. Grimes, Nano Lett. 11, 203 (2010).

    Article  ADS  Google Scholar 

  11. S. Liu, J. Tian, L. Wang, Y. Luo and X. Sun, Catal. Sci. Tech. 2, 339 (2012).

    Article  Google Scholar 

  12. T. G. Kim, H. Ryu, W. J. Lee and J. H. Yoon, Curr. Appl. Phys. 15, 473 (2015).

    Article  ADS  Google Scholar 

  13. Y. Liu, Y. Liu, R. Mu, H. Yang, C. Shao, J. Zhang, Y. Lu, D. Shen and X. Fan, Semicond. Sci. Tech. 20, 44 (2005).

    Article  ADS  Google Scholar 

  14. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. Kondo and K. Domen, Chem. Comm. 357 (1998).

    Google Scholar 

  15. P. de Jongh, D. Vanmaekelbergh and J. Kelly, Chem. Comm. 1069 (1999).

    Google Scholar 

  16. S. Ishizuka et al., physica status solidi (c) 1, 1067 (2004).

    Article  ADS  Google Scholar 

  17. M. Ivill, M. Overberg, C. Abernathy, D. Norton, A. Hebard, N. Theodoropoulou and J. Budai, Solid-State Electron. 47, 2215 (2003).

    Article  ADS  Google Scholar 

  18. T. Maruyama, Solar Energy Mater. Solar Cells. 56, 85 (1998).

    Article  Google Scholar 

  19. A. Musa, T. Akomolafe and M. Carter, Solar Energy Mater. Solar Cells 51, 305 (1998).

    Article  Google Scholar 

  20. H. Yu, J. Yu, S. Liu and S. Mann, Chem. Mater. 19, 4327 (2007).

    Article  Google Scholar 

  21. T. G. Kim, H. B. Oh and H. Ryu, J. Alloys Compd. 612, 74 (2014).

    Article  Google Scholar 

  22. T. G. Kim, J. T. Jang and H. Ryu, J. Korean Phys. Soc. 63, 78 (2013).

    Article  ADS  Google Scholar 

  23. C. Chiang, Y. Shin and S. Ehrman, J. Electrochem. Soc. 159, B227 (2011).

    Article  Google Scholar 

  24. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley and M. Grätzel, Energy Environ. Sci. 5, 8673 (2012).

    Article  Google Scholar 

  25. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel and E. Thimsen, Nature Mater. 10, 456 (2011).

    Article  ADS  Google Scholar 

  26. R. Y. Wang, D. W. Kirk and G. X. Zhang, J. Electrochem. Soc. 153, C357 (2006).

    Article  Google Scholar 

  27. B. Heng, T. Xiao, W. Tao, X. Hu, X. Chen, B. Wang, D. Sun and Y. Tang, Cryst. Growth Design 12, 3998 (2012).

    Article  Google Scholar 

  28. C. Zhu and M. J. Panzer, Appl. Mater. & Interfaces 7, 5624 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyukhyun Ryu.

Additional information

An erratum to this article is available at http://dx.doi.org/10.3938/jkps.67.1895.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.G., Lee, H.J., Ryu, H. et al. Effects of Zn amount on the properties of Zn-Cu2O composite films grown for PEC photoelectrodes by using electrochemical deposition. Journal of the Korean Physical Society 67, 1273–1277 (2015). https://doi.org/10.3938/jkps.67.1273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1273

Keywords

Navigation