Skip to main content
Log in

ZnFe2O4 nanoparticles prepared using the hydrothermal and the sol-gel methods

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Zinc-ferrite nanoparticles were prepared using the hydrothermal and the sol-gel methods. ZnFe2O4 nanoparticles with a spinel structure were formed by using both approaches, which was confirmed through X-ray diffraction. Although both types of ZnFe2O4 nanoparticles showed similar morphologies and particle sizes, the saturation magnetization of the ZnFe2O4 prepared using the hydrothermal method was about 10 times higher than that of the ZnFe2O4 prepared using the sol-gel method. Through the Rietveld refinement analysis, we were able to conclude that the enhanced magnetic property of ZnFe2O4 could be attributed to the cation inversion induced during the hydrothermal synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sugimoto, J. Am. Ceram. Soc. 82, 269 (1999).

    Article  Google Scholar 

  2. A. Verma and R. Chatterjee, J. Magn. Magn. Mater. 306, 313 (2006).

    Article  ADS  Google Scholar 

  3. S. Chikazumi, Physics of ferromagnetism (Clarendon Press, Oxford, 1997).

    Google Scholar 

  4. M. Atif, S. K. Hasanain and M. Nadeem, Solid State Commun. 138, 416 (2006).

    Article  ADS  Google Scholar 

  5. C. Yao et al., J. Phys. Chem. C 111, 12274 (2007).

    Article  Google Scholar 

  6. C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guérault and J-M. Greneches, J. Phys. Condens. Matter 12, 7795 (2000).

    Article  ADS  Google Scholar 

  7. S. D. Shenoy, P. A. Joy and M. R. Anantharaman, J. Magn. Magn. Mater. 269, 217 (2004).

    Article  ADS  Google Scholar 

  8. S. Bid and S. K. Pradhan, Mater. Chem. Phys. 82, 27 (2003).

    Article  Google Scholar 

  9. N. M. Deraz and A. Alarifi, Int. J. Electrochem. Sci. 7, 6501 (2012).

    Google Scholar 

  10. G. Thirupathi and R. Singh, IEEE Trans. Magn. 48, 3630 (2012).

    Article  ADS  Google Scholar 

  11. A. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004).

    Google Scholar 

  12. B. H. Toby, J. Appl. Cryst. 34, 210 (2001).

    Article  Google Scholar 

  13. B. P. Rao, G. S. N. Rao, A. M. Kumar, K. H. Rao, Y. L. N. Murthy, S. M. Hong, C.-O. Kim and C. Kim, J. Appl. Phys. 101, 123902 (2007).

    Article  ADS  Google Scholar 

  14. Y. M. Kwon, M. Y. Lee, M. Mustaqima, C. Liu and B. W. Lee, J. Magnetics 19, 64 (2014).

    Article  Google Scholar 

  15. T. Slatineanu, A. R. Iordan, M. N. Palamaru, O. F. Caltun, V. Gafton and L. Leontie, Mater. Res. Bull. 46, 1455 (2011).

    Article  Google Scholar 

  16. D. Zhao, X. Wu, H. Guan and E. Han, J. Supercritical Fluid 42, 226 (2007).

    Article  Google Scholar 

  17. S. S. Toor, L. Rosendahl and A. Rudolf, Energy 36, 2328 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wha Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lestari, K.R., Yoo, P., Kim, D.H. et al. ZnFe2O4 nanoparticles prepared using the hydrothermal and the sol-gel methods. Journal of the Korean Physical Society 66, 651–655 (2015). https://doi.org/10.3938/jkps.66.651

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.651

Keywords

Navigation