Skip to main content
Log in

Growth and fabrication method of CdTe and its performance as a radiation detector

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report the nitrogen-monoxide (NO) gas-sensing properties of transparent p-type copper-oxide (CuO) nanorod arrays synthesized by using the hydrothermal method with a CuO nanoparticle seed layer deposited on a glass substrate via sputtering process. We synthesized polycrystalline CuO nanorods measuring 200 to 300 nm in length and 20 to 30 nm in diameter for three controlled molarity ratios of 1:1, 1:2 and 1:4 between copper nitrate trihydrate [Cu(NO2)2·3H2O] and hexamethylenetetramine (C6H12N4). The crystal structures and morphologies of the synthesized CuO nanorod arrays were examined using grazing incidence X-ray diffraction and scanning electron microscopy. The gas-sensing measurements for NO gas in dry air indicated that the CuO nanorodarray-based gas sensors synthesized under hydrothermal condition at a molarity ratio of 1:2 showed the best gas sensing response to NO gas. These CuO nanorod-array gas sensors exhibited a highly sensitive response to NO gas, with a maximum sensitivity of about 650% for 10 ppm NO in dry air at an operating temperature of 100 ℃. These transparent p-type CuO nanorod-array gas sensors have shown a reversible and reliable response to NO gas over a range of operating temperatures. These results indicate certain potential use of p-type oxide semiconductor CuO nanorods as sensing materials for several types of gas sensors, including pn junction gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sauter, U. Weimar, G. Noetzel, J. Mitrovics and W. Göpel, Sens. Actuators B 69, 1 (2000).

    Article  Google Scholar 

  2. Y. Li, W. Wlodarski, K. Galatsis, S. H. Moslih, J. Cole, S. Russo and N. Rockelmann, Sens. Actuators B 83, 160 (2002).

    Article  Google Scholar 

  3. I. Hotovy, V. Rehacek, P. Siciliano, S. Capone and L. Spiess, Thin Solid Films 418, 9 (2002).

    Article  ADS  Google Scholar 

  4. S. Zhou, X. D. Fang, Z. H. Deng, D. Li, W. W. Dong, R. H. Tao, G. Meng and T. Wang, Sens. Actuators B 143, 119 (2009).

    Article  Google Scholar 

  5. X. G. Zheng, K. Taniguchi, A. Takahashi, Y. Liu and C. N. Xu, Appl. Phys. Lett. 85, 1728 (2004).

    Article  ADS  Google Scholar 

  6. Y. Min, H. L. Tüller, S. Palzer, J. Wöllenstein and H. Böttner, Sens. Actuators B 93, 435 (2003).

    Article  Google Scholar 

  7. T. Gao and T. H. Wang, Appl. Phys. A 80, 1451 (2005).

    Article  ADS  Google Scholar 

  8. J. Xu, Q. Pan, Y. Shun and Z. Tian, Sens. Actuators B 66, 277 (2000).

    Article  Google Scholar 

  9. Z. Fan and J. G. Lu, J. Nanosci. Nanotech. 5, 1561 (2005).

    Article  Google Scholar 

  10. A. O. Dikovska, Sens. Actuators A 140, 19 (2007).

    Article  Google Scholar 

  11. Y. Mun, S. Park, H. Ko, C. Lee and S. Lee, J. Korean Phys. Soc. 63, 1595 (2013).

    Article  ADS  Google Scholar 

  12. F. P.Koffyberg and F. A. Benko, J. Appl. Phys. 53, 1173 (1982).

    Article  ADS  Google Scholar 

  13. A. O. Musa, T. Akomolafe and M. J. Carter, Sol. Energy Mater. Sol. Cells 51, 305 (1998).

    Article  Google Scholar 

  14. G. Uozumi and M. Miyayama, J. Ceram. Soc. Japan 105, 366 (1997).

    Google Scholar 

  15. T. Ogushi, S. Koba, M. Hirose, S. Higo, I. Kawano and A. Nakao, Mod. Phys. Lett. B 9, 1069 (1995).

    Article  ADS  Google Scholar 

  16. Y. Ushio, M. Miyayama and A. H. Yanagida, Sensors Actuators B 17, 221 (1994).

    Article  Google Scholar 

  17. B. J. Hansen, N. Kouklin, G. Lu, I. K. Lin, J. Chen and X. Zhang, J. Phys. Chem. C 114, 2440 (2010).

    Article  Google Scholar 

  18. Y. Tian, F. Zhang, A. W. Zhu, Y. P. Luo, J. H. Yang and Y. Qin, J. Phys. Chem. C 114, 19214 (2010).

    Article  Google Scholar 

  19. G. X. Wang, X. L. Gou, J. S. Yang, J. Park and D. Wexler, J. Mater. Chem. 18, 965 (2008).

    Article  Google Scholar 

  20. Y. Zhang, X. L. He, J. P. Li, H. G. Zhang and X. G. Gao, Sens. Actuators B 128, 293 (2007).

    Article  Google Scholar 

  21. I. Singh and R. K. Bedi, ACS Appl. Mater. Interfaces 2, 1361 (2010).

    Article  Google Scholar 

  22. C. Wang, X. Q. Fu, X. Y. Xue, Y. G. Wang and T. H. Wang, Nanotechnology 18, 145506 (2007).

    Article  ADS  Google Scholar 

  23. Y. Chang and H. C. Zeng, Cryst. Growth Des. 4, 397 (2004).

    Article  Google Scholar 

  24. W. T. Yao, S. H. Yu, Y. Zhou, J. Jiang, Q. S. Wu, L. Zhang and J. Jiang, J. Phys. Chem. B 109, 14011 (2005).

    Article  Google Scholar 

  25. X. G. Wen, Y. T. Xie, C. L. Choi, K. C. Wan, X. Y. Li and S. H. Yang, Langmuir 21, 4729 (2005).

    Article  Google Scholar 

  26. F. Gao, H. Pang, S. P. Xu and Q. Y. Lu, Chem. Commun., 3571 (2009).

    Google Scholar 

  27. K. M. Shrestha, C. M. Sorensen and K. J. Klabunde, J. Phys. Chem. C 114, 14368 (2010).

    Article  Google Scholar 

  28. L. Liu, K. Hong, T. Hu and M. Xu, J. Alloys Compd. 511, 195 (2012).

    Article  Google Scholar 

  29. C. Yang, X. Su, F. Xiao, J. Jian and J. Wang, Sens. Actuators B 158, 299 (2011).

    Article  Google Scholar 

  30. N. L. Hung, H. Kim, S-K. Hong and D. Kim, Sens. Actuators B 151, 127 (2010).

    Article  Google Scholar 

  31. R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams and G. A. Ozin, Adv. Mater. 13, 1468 (2001).

    Article  Google Scholar 

  32. S. C. Naisbitt, K. F. E. Pratt, D. E. Williams and I. P. Parkin, Sens. Actuators B 114, 969 (2006).

    Article  Google Scholar 

  33. N. S. Ramgir, S. K. Ganapathi, M. Kaur, N. Datta, K. P. Muthe, D. K. Aswal, S. K. Gupta and J. V. Yakhmi, Sens. Actuators B 151, 90 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyojin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Kim, H. & Kim, D. Growth and fabrication method of CdTe and its performance as a radiation detector. Journal of the Korean Physical Society 66, 31–36 (2015). https://doi.org/10.3938/jkps.66.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.31

Keywords

Navigation