Skip to main content
Log in

Computation and analysis of the electron transport properties for nitrogen and air inductively-coupled plasmas

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A relatively simple method for calculating accurately the third-order electron transport properties of nitrogen and air thermal plasmas is presented. The electron transport properties, such as the electrical conductivity and the electron thermal conductivity, were computed with the best and latest available collision cross-section data in the temperature and pressure ranges of T = 300 - 15000 K and p = 0.01 - 1.0 atm, respectively. The results obtained under the atmospheric pressure condition showed good agreements with the experimental and the high-accuracy theoretical results. The presently-introduced method has good application potential in numerical simulations of nitrogen and air inductively-coupled plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Suzuki, K. Fujita, K. Ando and T. Sakai, J. Thermophys. Heat Tr. 22, 382 (2008).

    Article  Google Scholar 

  2. F. Gitzhofer, Pure Appl. Chem. 68, 1113 (1996).

    Article  Google Scholar 

  3. T. Watanabe and H. Okumiya, Sci. Technol. Adv. Mat. 5, 639 (2004).

    Article  Google Scholar 

  4. Y. Tanaka and T. Sakuta, J. Phys. D: Appl. Phys. 35, 468 (2002).

    Article  ADS  Google Scholar 

  5. M. Yu, Y. Takahashi, H. Kihara, K. Abe, K. Yamada and T. Abe, Plasma Sci. Technol. 16, 930 (2014).

    Article  ADS  Google Scholar 

  6. J. H. Park and S. H. Hong, J. Korean Phys. Soc. 31, 753 (1997).

    Google Scholar 

  7. J. H. Seo, J. Korean Soc. Aeronaut. & Space Sci. 40, 316 (2012).

    Google Scholar 

  8. R. N. Gupta, J. M. Yos, R. A. Thompson and K. P. Lee, NASA RP-1232, 1990.

    Google Scholar 

  9. Y. Tanaka, J. Phys. D: Appl. Phys. 37, 1190 (2004).

    Article  ADS  Google Scholar 

  10. G. Degrez, D. V. Abeele, P. Barbante and B. Bottin, Int. J. Numer. Method H. 14, 538 (2004).

    Article  Google Scholar 

  11. R. S. Devoto, Phys. Fluids 10, 2105 (1967).

    Article  ADS  Google Scholar 

  12. A. B. Murphy and C. J. Arundell, Plasma Chem. Plasma P. 14, 451 (1994).

    Article  Google Scholar 

  13. A. B. Murphy, Plasma Chem. Plasma P. 15, 279 (1995).

    Article  Google Scholar 

  14. B. Bottin, D. V. Abeele, M. Carbonaro, G. Degrez and G. S. R. Sarma, J. Thermophys. Heat Tr. 13, 343 (1999).

    Article  Google Scholar 

  15. V. Colombo, E. Ghedini and P. Sanibondi, Prog. Nucl. Energ. 50, 921 (2008).

    Article  Google Scholar 

  16. A. D’Angola, G. Colonna, C. Gorse and M. Capitelli, Eur. Phys. J. D 46, 129 (2008).

    Article  ADS  Google Scholar 

  17. W. Z. Wang, M. Z. Rong, J. D. Yan, A. B. Murphy and J. W. Spencer, Phys. Plasmas 18, 113502 (2011).

    Article  ADS  Google Scholar 

  18. A. Laricchiuta, D. Bruno, M. Capitelli, C. Catalfamo, R. Celiberto, G. Colonna, P. Diomede, D. Giordano, C. Gorse, et al., Eur. Phys. J. D 54, 607 (2009).

    Article  ADS  Google Scholar 

  19. S. Ghorui and A. K. Das, Phys. Plasmas 20, 093504 (2013).

    Article  ADS  Google Scholar 

  20. D. Vanden Abeele and G. Degrez, AIAA J. 38, 234 (2000).

    Article  ADS  Google Scholar 

  21. C. Park, Nonequilibrium Hypersonic Aerothermodynamics. (Wiley, New York, 1990).

    Google Scholar 

  22. R. Doihara, Ph.D. Thesis, Kyushu University, 2001.

    Google Scholar 

  23. M. Van de Sanden, P. Schram, A. Peeters, J. van der Mullen and G. Kroesen, Phys. Rev. A 40, 5273 (1989).

    Article  ADS  Google Scholar 

  24. G. Colonna and A. D’Angola, Compt. Phys. Commun. 163, 177 (2004).

    Article  ADS  Google Scholar 

  25. G. Colonna. Comput. Phys. Commun. 177, 493 (2007).

    Article  ADS  Google Scholar 

  26. E. I. Asinovsky, A. V. Kirillin, E. P. Pakhomov and V. I. Shabashov, Pr. Inst. Electr. Elect. 59, 592 (1971).

    Article  Google Scholar 

  27. M. Capitelli and R. S. Devoto, Phys. Fluids 16, 1835 (1973).

    Article  ADS  Google Scholar 

  28. M. Capitelli, G. Colonna, C. Gorse and A. D’Angola, Eur. Phys. J. D 11, 279 (2000).

    Article  ADS  Google Scholar 

  29. M. J.Wright, D. Bose, G. E. Palmer and E. Levin, AIAA J. 43, 2558 (2005).

    Article  ADS  Google Scholar 

  30. W. Z. Wang, Y. Wu, M. Z. Rong and F. Yang, Acta Phys. Sin. 61, 105201 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Kihara, H., Abe, Ki. et al. Computation and analysis of the electron transport properties for nitrogen and air inductively-coupled plasmas. Journal of the Korean Physical Society 66, 1833–1840 (2015). https://doi.org/10.3938/jkps.66.1833

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1833

Keywords

Navigation