Skip to main content
Log in

Recent progress on Kubas-type hydrogen-storage nanomaterials: from theories to experiments

  • Review Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Transition-metal (TM) atoms are known to form TM-H2 complexes, which are collectively called Kubas dihydrogen complexes. The TM-H2 complexes are formed through the hybridization of the TM d orbitals with the H2 σ and σ* orbitals. The adsorption energy of H2 molecules in the TM-H2 complexes is usually within the range of energy required for reversible H2 storage at room temperature and ambient pressure (−0.4 ~ −0.2 eV/H2). Thus, TM-H2 complexes have been investigated as potential Kubas-type hydrogen-storage materials. Recently, TM-decorated nanomaterials have attracted much attention because of their promising high capacity and reversibility as Kubas-type hydrogen-storage materials. The hydrogen storage capacity of TM-decorated nanomaterials is expected to be as large as ~9 wt%, which is suitable for certain vehicular applications. However, in the TM-decorated nanostructures, the TM atoms prefer to form clusters because of the large cohesive energy (approximately 4 eV), which leads to a significant reduction in the hydrogen-storage capacity. On the other hand, Ca atoms can form complexes with H2 molecules via Kubas-like interactions. Ca atoms attached to nanomaterials have been reported to be able to adsorb as many H2 molecules as TM atoms. Ca atoms tend to cluster less because of the small cohesive energy of bulk Ca (1.83 eV), which is much smaller than those of bulk TMs. These observations suggest thatKubas interactions can occur in d orbital-free elements, thereby making Ca a more suitable element for attracting H2 in hydrogen-storage materials. Recently, Kubas-type TM-based, hydrogen- stor ge materials were experimentally synthesized, and the Kubas-type interactions were measured to be stronger than the van der Waals interactions. In this review, the recent progress of Kubas-type hydrogen- storage materials will be discussed from both theoretical and experimental viewpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Schlapbach and A. Zuttel, Nature 414, 353 (2001).

    Article  ADS  Google Scholar 

  2. G. W. Crabtree, M. S. Dresselhaus and M. V. Buchanan, Phys. Today 57, 39 (2004).

    Google Scholar 

  3. C. W. Hamilton, R. T. Baker, A. Staubitz and I. Manners, Chem. Soc. Rev. 38, 279 (2009).

    Google Scholar 

  4. V. Guther and A. Otto, J Alloy Compd 293, 889 (1999).

    Article  Google Scholar 

  5. B. Sakintuna, F. Lamari-Darkrim and M. Hirscher, Intern. J. of Hydrogen Energy 32, 1121 (2007).

    Article  Google Scholar 

  6. P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin and K. L. Tan, Nature 420, 302 (2002).

    Article  ADS  Google Scholar 

  7. H. Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe and H. Fujii, J. Phys. Chem. B 108, 12628 (2004).

    Article  Google Scholar 

  8. A. Zuttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron and C. Emmenegger, J. Alloy Compd. 356, 515 (2003).

    Article  Google Scholar 

  9. S. I. Orimo, Y. Nakamori, J. R. Eliseo, A. Zuttel and C. M. Jensen, Chem. Rev. 107, 4111 (2007).

    Article  Google Scholar 

  10. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, Nature 386, 377 (1997).

    Article  ADS  Google Scholar 

  11. S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine and G. Seifert, Proc. Natl. Acad. Sci. USA 102, 10439 (2005).

    Article  ADS  Google Scholar 

  12. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Dresselhaus, Science 286, 1127 (1999).

    Article  Google Scholar 

  13. J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Edit. 44, 4670 (2005).

    Article  Google Scholar 

  14. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe and O. M. Yaghi, Science 300, 1127 (2003).

    Article  ADS  Google Scholar 

  15. L. J. Murray, M. Dinca and J. R. Long, Chem. Soc. Rev. 38, 1294 (2009).

    Article  Google Scholar 

  16. X. B. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw and M. J. Rosseinsky, Science 306, 1012 (2004).

    Article  ADS  Google Scholar 

  17. M. Latroche, S. Surble, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J. H. Lee, J. S. Chang, S. H. Jhung and G. Ferey, Angew. Chem. Int. Edit. 45, 8227 (2006).

    Article  Google Scholar 

  18. D. Kim, D. H. Jung, S. H. Choi, J. Kim and K. Choi, J. Korean Phys. Soc. 52, 1255 (2008).

    Article  ADS  Google Scholar 

  19. S. M. Lee, K. H. An, Y. H. Lee, G. Seifert and T. Frauenheim, J. Korean Phys. Soc. 38, 686 (2001).

    Google Scholar 

  20. C. Kittel and H. Kroemer, (W. H. Freeman & Company, 1980), p. 140.

  21. K. S. W. Sing, Adv Colloid Interfac 76, 3 (1998).

    Article  Google Scholar 

  22. H. Lee, W. I. Choi, M. C. Nguyen, M. H. Cha, E. Moon and J. Ihm, Phys. Rev. B 76, 195110 (2007).

    Article  ADS  Google Scholar 

  23. H. Lee, W. I. Choi and J. Ihm, Phys. Rev. Lett. 97, 056104 (2006).

    Article  ADS  Google Scholar 

  24. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  25. G. J. Kubas, J. Organomet. Chem. 635, 37 (2001).

    Article  Google Scholar 

  26. G. J. Kubas, Proc. Natl. Acad. Sci. 104, 6901 (2007).

    Article  ADS  Google Scholar 

  27. D. M. Heinekey and W. J. Oldham, Chem. Rev. 93, 913 (1993).

    Article  Google Scholar 

  28. T. Yildirim and S. Ciraci, Phys. Rev. Lett. 94, 175501 (2005).

    Article  ADS  Google Scholar 

  29. T. Yildirim, J. Íńiguez and S. Ciraci, Phys. Rev. B 72, 153403 (2005).

    Article  ADS  Google Scholar 

  30. Y. Zhao, Y.-H. Kim, A. C. Dillon, M. J. Heben and S. B. Zhang, Phys. Rev. Lett. 94, 155504 (2005).

    Article  ADS  Google Scholar 

  31. N. Park, K. Choi, J. Hwang, D. W. Kim, D. O. Kim and J. Ihm, Proc. Natl. Acad. Sci. U.S.A 109, 19893 (2012).

    Article  ADS  Google Scholar 

  32. B. Kiran, A. K. Kandalam and P. Jena, J. Chem. Phys. 124, 224703 (2006).

  33. P. Pyykko, J. Organomet. Chem. 691, 4336 (2006).

    Article  Google Scholar 

  34. S. Banerjee, S. Nigam, C. G. S. Pillai and C. Majumder, Intern. J. Hydrogen Energy 37, 3733 (2012).

    Article  Google Scholar 

  35. B. Chakraborty, P. Modak and S. Banerjee, J. Phys. Chem. C 116, 22502 (2012).

    Article  Google Scholar 

  36. Y. Y. Sun, Y.-H. Kim, K. Lee, D. West and S. B. Zhang, Phys. Chem. Chem. Phys. 13, 5042 (2011).

    Article  Google Scholar 

  37. W. H. Shin, S. H. Yang, W. A. Goddard and J. K. Kang, Appl. Phys. Lett. 88, 053111 (2006).

    Article  ADS  Google Scholar 

  38. E. Durgun, S. Ciraci and T. Yildirim, Phys. Rev. B 77, 085405 (2008).

    Article  ADS  Google Scholar 

  39. E. Durgun, S. Ciraci, W. Zhou and T. Yildirim, Phys. Rev. Lett. 97, 226102 (2006).

    Article  ADS  Google Scholar 

  40. W. Zhou, T. Yildirim, E. Durgun and S. Ciraci, Phys. Rev. B 76, 085434 (2007).

    Article  ADS  Google Scholar 

  41. S. Meng, E. Kaxiras and Z. Zhang, Nano Lett. 7, 663 (2007).

    Article  ADS  Google Scholar 

  42. N. Park, S. Hong, G. Kim and S.-H. Jhi, J. Am. Chem. Soc. 129, 8999 (2007).

    Article  Google Scholar 

  43. Q. Hu, H. Wang, Q. Wu, X. Ye, A. Zhou, D. Sun, L. Wang, B. Liu and J. He, Intern. J. Hydrogen Energy 39, 10606 (2014).

    Article  Google Scholar 

  44. K. Srinivasu and S. K. Ghosh, J. Phys. Chem. C 116, 25184 (2012).

    Article  Google Scholar 

  45. A. Chakraborty, S. Giri and P. K. Chattaraj, Structural Chem. 22, 823 (2011).

    Article  Google Scholar 

  46. K. Lü, J. Zhou, L. Zhou, Q. Wang, Q. Sun and P. Jena, Appl. Phys. Lett. 99, 163104 (2011).

    Article  ADS  Google Scholar 

  47. Q. Sun, Q. Wang, P. Jena, B. V. Reddy and M. Marquez, Chem. Mat. 19, 3074 (2007).

    Article  Google Scholar 

  48. G. Kim, S.-H. Jhi, S. Lim and N. Park, Phys. Rev. B 79, 155437 (2009).

    Article  Google Scholar 

  49. A. Bhattacharya, S. Bhattacharya, C. Majumder and G. P. Das, J. Phys. Chem. C 114, 10297 (2010).

    Article  Google Scholar 

  50. S. Nachimuthu, P.-J. Lai and J.-C. Jiang, Carbon 73, 132 (2014).

    Article  Google Scholar 

  51. G. Kim, S. H. Jhi, N. Park, S. G. Louie and M. L. Cohen, Phys. Rev. B 78, 085408 (2008).

    Article  ADS  Google Scholar 

  52. T. K. A. Hoang and D. M. Antonelli, Adv Mater 21, 1787 (2009).

    Article  Google Scholar 

  53. Y. F. Zhao, M. T. Lusk, A. C. Dillon, M. J. Heben and S. B. Zhang, Nano Lett. 8, 157 (2008).

    Article  ADS  Google Scholar 

  54. S. H. Jhi, G. Kim and N. Park, J. Korean Phys. Soc. 52, 1217 (2008).

    Article  ADS  Google Scholar 

  55. Q. Sun, Q. Wang, P. Jena and Y. Kawazoe, J. Am. Chem. Soc. 127, 14582 (2005).

    Article  Google Scholar 

  56. S. Li and P. Jena, Phys. Rev. Lett. 97, 209601 (2006).

    Article  ADS  Google Scholar 

  57. H. Lee, J. Ihm, M. L. Cohen and S. G. Louie, Phys. Rev. B 80, 115412 (2009).

    Article  ADS  Google Scholar 

  58. Y.-H. Kim, Y. Y. Sun and S. B. Zhang, Phys. Rev. B 79, 115424 (2009).

    Article  ADS  Google Scholar 

  59. H. Lee, J. Ihm, M. L. Cohen and S. G. Louie, Nano Lett. 10, 793 (2010).

    Article  ADS  Google Scholar 

  60. C. Ataca, E. Akturk and S. Ciraci, Phys. Rev. B 79, 041406 (2009).

    Article  ADS  Google Scholar 

  61. C. Cazorla, S. A. Shevlin and Z. X. Guo, Phys. Rev. B 82, 155454 (2010).

    Article  ADS  Google Scholar 

  62. H. J. Hwang, Y. Kwon and H. Lee, J. Phys. Chem. C 116, 20220 (2012).

    Article  Google Scholar 

  63. T. Hussain, B. Pathak, M. Ramzan, T. A. Maark and R. Ahuja, Appl. Phys. Lett. 100, 183902 (2012).

    Article  ADS  Google Scholar 

  64. Q. Wang, Q. Sun, P. Jena and Y. Kawazoe, J. Chem. Theory Comput. 5, 374 (2009).

    Article  Google Scholar 

  65. Y. S. Wang, P. F. Yuan, M. Li, W. F. Jiang, Q. Sun and Y. Jia, J. Solid State Chem. 197, 323 (2013).

    Article  ADS  Google Scholar 

  66. E. Beheshti, A. Nojeh and P. Servati, Carbon 49, 1561 (2011).

    Article  Google Scholar 

  67. C. Li, J. Li, F. Wu, S.-S. Li, J.-B. Xia and L.-W. Wang, J. Phys. Chem. C 115, 23221 (2011).

    Article  Google Scholar 

  68. T. Sagara and E. Ganz, J. Phys. Chem. C 112, 3515 (2008).

    Google Scholar 

  69. P. B. Sorokin, H. Lee, L. Y. Antipina, A. K. Singh and B. I. Yakobson, Nano Lett. 11, 2660 (2011).

    Article  Google Scholar 

  70. C. Li, J. B. Li, F. M. Wu, S. S. Li, J. B. Xia and L. W. Wang, J. Phys. Chem. C 115, 23221 (2011).

    Article  Google Scholar 

  71. Z. Yang and J. Ni, Appl. Phys. Lett. 97, 253117 (2010).

    Article  ADS  Google Scholar 

  72. X. L. Zou, M. H. Cha, S. Kim, M. C. Nguyen, G. Zhou, W. H. Duan and J. Ihm, Intern. J. Hydrogen Energy 35, 198 (2010).

    Article  Google Scholar 

  73. A. Reyhani, S. Z. Mortazavi, S. Mirershadi, A. Z. Moshfegh, P. Parvin and A. N. Golikand, J. Phys. Chem. C 115, 6994 (2011).

    Article  Google Scholar 

  74. X. Hu, B. O. Skadtchenko, M. Trudeau and D. M. Antonelli, J. Am. Chem. Soc. 128, 11740 (2006).

    Article  Google Scholar 

  75. T. K. A. Hoang, A. Hamaed, G. Moula, R. Aroca, M. Trudeau and D. M. Antonelli, J. Am. Chem. Soc. 133, 4955 (2011).

    Article  Google Scholar 

  76. A. Hamaed, T. K. A. Hoang, G. Moula, R. Aroca, M. L. Trudeau and D. M. Antonelli, J. Am. Chem. Soc. 133, 15434 (2011).

    Article  Google Scholar 

  77. T. K. A. Hoang, M. I. Webb, H. V. Mai, A. Hamaed, C. J. Walsby, M. Trudeau and D. M. Antonelli, J. Am. Chem. Soc. 132, 11792 (2010).

    Article  Google Scholar 

  78. A. Hamaed, M. Trudeau and D. M. Antonelli, J. Am. Chem. Soc. 130, 6992 (2008).

    Article  Google Scholar 

  79. T. K. A. Hoang, L. Morris, D. Reed, D. Book, M. L. Trudeau and D. M. Antonelli, Chem. Mat. 25, 4765 (2013).

    Google Scholar 

  80. A. B. Phillips and B. S. Shivaram, Phys. Rev. Lett. 100, 105505 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoonkyung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, C., Ihm, J. & Lee, H. Recent progress on Kubas-type hydrogen-storage nanomaterials: from theories to experiments. Journal of the Korean Physical Society 66, 1649–1655 (2015). https://doi.org/10.3938/jkps.66.1649

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1649

Keywords

Navigation