Skip to main content
Log in

Preparation of iron aluminate (FeAl2O4) nanoparticles from FeAl2O4 hollow particles fabricated by using a spray pyrolysis process

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Iron aluminate (FeAl2O4) hollow particles with a spinel structure were synthesized by using a spray pyrolysis process. FeAl2O4 hollow particles were formed at a reaction temperature of 900 °C at a flow rate of 40 L/min as a result of the rapid solvent evaporation and decomposition gases from the droplets in the spray solution prepared from metal salts and organic reagents. FeAl2O4 hollow particles were fabricated at a reaction temperature of 900 °C with a flow rate of 40 L/min. The FeAl2O4 hollow particles were heat treated for 3 hours at 600 °C in a 5% H2/Ar atmosphere to form the crystal particles. Subsequently, FeAl2O4 nanoparticles were fabricated from the FeAl2O4 hollow particles by using the wet milling process. After milling for 60 minutes, transmission electron microscopy revealed the FeAl2O4 particles to have a mean size of approximately 50 nm. The FeAl2O4 nanoparticles were fabricated successfully by using a two-step process, spray pyrolysis and wet milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Stringhini, E. L. Foletto, D. Sallet, D. A. Bertuol, O. Chiavone-Filho and C. A. O. Nascimento, J. Alloys Comp. 588, 305 (2014).

    Article  Google Scholar 

  2. Dimple P. Dutta and G. Sharma, Mater. Sci. Eng.: B 176, 177 (2011).

    Article  Google Scholar 

  3. J. C. Lashley, R. Stevens, M. K. Crawford, J. Boerio-Goates, B. F. Woodfield, Y. Qiu, J. W. Lynn, P. A. Goddard and R. A. Fisher, Phys. Rev. B 78, 104406 (2008).

    Article  ADS  Google Scholar 

  4. J. M. A. Almeida, C. T. Meneses, A. S. de Menezes, R. F. Jardim and J. M. Sasaki, J Magn. Magn. Mater. 320, c304 (2008).

  5. J. Fukushima, Y. Hayashi and H. Takizawa, J. Asian Ceram. Soc. 1, 41 (2013).

    Article  Google Scholar 

  6. Y. P. Udalov, B. A. Lavrov, V. V. Smirnov, D. Y. Sharov and A. S. Sidorov, Glass Phys. Chem. 30, 90 (2004).

    Article  Google Scholar 

  7. N. Shimoda, H. Muroyama, T. Matsui, K. Faungnawakij, R. Kikuchi and K. Eguchi, Appl. Catal. A: Gen. 409–410, 91 (2011).

    Article  Google Scholar 

  8. S. Chokkaram, R. Srinivasan, Diane R. Milburn and Burtron H. Davis, J Mol. Catal. A: Chem. 121, 157 (1997).

    Article  Google Scholar 

  9. G. B. Andreozzi, G. Baldi, G. P. Bernardini, F. D. Benedetto and M. Romanelli, J. Eur. Ceram. Soc. 24, 821 (2004).

    Article  Google Scholar 

  10. L. M. Atlas and W. K. Sumida, J Am. Ceram. Soc. 41, 150 (1958).

    Article  Google Scholar 

  11. A. N. Tsvigunov, A. V. Apolenis, V. É. Annikov and V. M. Raikova, Glass Ceram. 64, 429 (2007).

    Article  Google Scholar 

  12. A. V. Apolenis, A. N. Tsvigunov, V. E. Annikov and V. M. Raikova, Cent. Eur. J Energ. Mater. 5, 37 (2008).

    Google Scholar 

  13. G. L. Messing, S-C, Zhang and G. V. Jayanthi, J. Am. Ceram. Soc. 76, 2707 (1993).

    Article  Google Scholar 

  14. D. S. Jung, S. B. Park and Y. C. Kang, Korean J. Chem. Eng. 27, 1621 (2010).

    Article  Google Scholar 

  15. J. Lu, Y. Jiang, Y. Zhang, J. Huang and Z. Xu, Ceram. Int. 41, 3714 (2015).

    Article  Google Scholar 

  16. D. Han, J. Wan, Y. Ma, Y. Wang, Y. Li, D. Li and Z. Guan, Chem. Eng. J. 269, 425 (2015).

    Article  Google Scholar 

  17. S. H. Park, C. H. Kim, Y. C. Kang and Y. H. Kim, J Mater. Sci. Lett. 22, 1537 (2003).

    Article  Google Scholar 

  18. B. K. Ozcelik and C. Ergun, Ceram. Int. 41, 1994 (2015).

    Article  Google Scholar 

  19. B. Martinez, A. Roig, E. Molins, T. Gonzalez-Carreno and C. J. Serna, J. Appl. Phys. 83, 3256 (1998).

    Article  ADS  Google Scholar 

  20. Y. S. Chung, S. B. Park and D-W. Kang, Mater. Chem. Phys. 86, 375 (2004).

    Article  Google Scholar 

  21. W. H. Suh and Kenneth S. Suslick, J. Am. Chem. Soc. 127, 12007 (2005).

    Article  Google Scholar 

  22. F. Iskandar, Mikrajuddin and K. Okuyama, Nano Lett. 2, 389 (2002).

    Article  ADS  Google Scholar 

  23. S. H. Kim, B. Y. H. Liu and M. R. Zachariah, Chem. Mater. 14, 2889 (2002).

    Article  Google Scholar 

  24. V. Jokanovic, A. M. Spasic and D. Uskokovic, J. Colloid Interface Sci. 278, 342 (2004).

    Article  Google Scholar 

  25. P. M. Arnal, M. Comotti and F. Schüth, Angew. Chem. 118, 8404 (2006).

    Article  Google Scholar 

  26. Y. H. Cho, Y. C. Kang and J-H. Lee, Sens. Actuators B: 176, 971 (2013).

    Article  Google Scholar 

  27. I. W. Lenggoro, Y. Itoh, N. Iida and K. Okuyama, Mater. Res. Bull. 38, 1819 (2003).

    Article  Google Scholar 

  28. K. Okuyama and I. W. Lenggoro, Chem. Eng. Sci. 58, 537 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangdo Kim or Jung-Yeul Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, J., Kim, Y., Park, D. et al. Preparation of iron aluminate (FeAl2O4) nanoparticles from FeAl2O4 hollow particles fabricated by using a spray pyrolysis process. Journal of the Korean Physical Society 66, 1503–1507 (2015). https://doi.org/10.3938/jkps.66.1503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1503

Keywords

Navigation