Skip to main content
Log in

Fabrication, structure and hydrogen-gas-sensing properties of multiple networked GaN nanostructure gas sensors

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The controlled synthesis of nanostructures with different shapes and morphologies has attracted considerable interest because the sensing properties of nanostructures depend on their structure, shape, phase, size, and size distribution, as well as their composition. This paper compares the responses of GaN nanostructures with different morphologies to hydrogen. The underlying mechanism for the hydrogen gas sensing of the multiple networked GaN nanowire sensor can be explained based on the well-established surface depletion model. On the other hand, the difference between two different samples, the GaN nanostructure sample synthesized at 1,100 °C and that synthesized at 1,000 °C, could be explained as follows: The major process behind the interaction between the nanostructures and hydrogen is the chemisorption of the dissociated hydrogen on the GaN surface. The chemisorption creates an electron accumulation layer on the GaN surface that enhances its electrical conductance. The GaN nanostructure sample synthesized at 1,100 °C with a higher ammonia flow rate showed a higher response to H2 gas than that synthesized at 1,000 °C with a lower ammonia flow rate, which might be attributed to the higher surface-to-volume ratio of the former.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, Sensors 10, 2088 (2010).

    Article  Google Scholar 

  2. Ogawa, H. Nishikawa and M. Abe, J. Appl. Phys. 53, 4448 (1982).

    Article  ADS  Google Scholar 

  3. V. Sysoev, T. Schneider, J. Goschnick, I. Kiselev, W. Habicht, H. Hahn, E. Strelcov and A. Kolmakov, Sens. Actuators B 139, 699 (2009).

    Article  Google Scholar 

  4. J. W. Johnson et al., Solid-State Electron 45, 1979 (2001).

    Article  ADS  Google Scholar 

  5. E. J. Connolly, G. M. O’Halloran, H. T. M. Pham, P. M. Sarro and P. J. French, Sens. Actuators A 100, 25 (2004).

    Article  Google Scholar 

  6. B. P. Luther, S. D. Wolter and S. E. Mohney, Sens. Actuators B 56, 164 (1999).

    Article  Google Scholar 

  7. J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher and M. Stutzmann, Mater. Sci. Eng. B 93, 207 (2002).

    Article  Google Scholar 

  8. J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher and M. Stutzmann, Sens. Actuators B 87, 425 (2002).

    Article  Google Scholar 

  9. G. Zhao, W. Sutton, D. Pavlidis, E. L. Piner, J. Schwank and S. Hubbard, IEICE Trans. Electron. E86-C, 2027 (2003).

    Google Scholar 

  10. J. Schalwig, G. Muller, L. Gorgens and G. Dollinger, Appl. Phys. Lett. 80, 1222 (2002).

    Article  ADS  Google Scholar 

  11. J. Kim, F. Ren, B. P. Gila, C. R. Abernathy and S. J. Pearton, Appl. Phys. Lett. 82, 739 (2003).

    Article  ADS  Google Scholar 

  12. J. Kim, B. P. Gila, C. R. Abernathy, G. Y. Chung, F. Ren and S. J. Pearton, Solid-state Electron. 47, 1487 (2003).

    Article  ADS  Google Scholar 

  13. O. Weidemann, M. Hermann, G. Steinhoff, H. Wingbrant, A. Lloyd Spetz, M. Stutzmann and M. Eickhoff, Appl. Phys. Lett. 83, 773 (2003).

    Article  ADS  Google Scholar 

  14. E. Souteyrand, D. Nicolas and J. R. Martin, Sens. Actuators B 24, 871 (1995).

    Google Scholar 

  15. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong and C. A. Grimes, Sens. Actuators B 93, 338 (2003).

    Article  Google Scholar 

  16. M. J. Madou and S. R. Morrison, Chemical Sensing with Solid State Devices (Academic Press, New York, 1989).

    Google Scholar 

  17. G. B. Raupp and J. A. Dumesic, J. Phys. Chem. 89, 5240 (1985).

    Article  Google Scholar 

  18. H. Gu, Z. Wang and Y. Hu, Sensors 12, 5517 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Kim, S. & Lee, C. Fabrication, structure and hydrogen-gas-sensing properties of multiple networked GaN nanostructure gas sensors. Journal of the Korean Physical Society 66, 1062–1066 (2015). https://doi.org/10.3938/jkps.66.1062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1062

Keywords

Navigation