Skip to main content
Log in

Comparison of an adaptive neuro-fuzzy inference system and an artificial neural network in the cross-talk correction of simultaneous 99mTc / 201Tl SPECT imaging using a GATE Monte-Carlo simulation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman’s rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. T. Gullberg, B. W. Reutter, A. Sitek, J. S. Maltz and T. F. Budinger, Phys. Med. Biol. 55, R111 (2010).

    Article  ADS  Google Scholar 

  2. P. J. Slomka, D. S. Berman, and G. Germano, Curr. Cardiovasc. Imaging 3, 162 (2010).

    Article  Google Scholar 

  3. Z. Shahpouri, A. Kamali-Asl, A. Bitarafan-Rajabi, J. Hossain, S. M. Entezarmahdi, S. Mohseni, N. Yaghoobi and A. Rahmim, Front. Biomed. Technol. 1, 91 (2014).

    Google Scholar 

  4. D. J. Kadrmas, E. C. Frey and B. M. Tsui, Phys. Med. Biol. 44, 1843 (1999).

    Article  Google Scholar 

  5. G. El Fakhri, S. C. Moore, P. Maksud, A. Aurengo and M. F. Kijewski, J. Nucl. Med. 42, 300 (2001).

    Google Scholar 

  6. G. El Fakhri, P. Maksud, M. Kijewski, M. Haberi, A. Todd-Pokropek, A. Aurengo and S. Moore, IEEE Trans. Nucl. Sci. 47, 1573 (2000).

    Article  ADS  Google Scholar 

  7. G. El Fakhri, P. Maksud, M. Kijewski, R. Zimmerman and S. Moore, IEEE Trans. Nucl. Sci. 49, 2315 (2002).

    Article  ADS  Google Scholar 

  8. M. Faraggi, J. Moretti, and P. Hannequin, Eur. J. Nucl. Med. Mol. Imaging 30, 25 (2003).

    Article  Google Scholar 

  9. D. S. Berman, H. S. Kiat, K. F. Van Train, G. Germano, J. Maddahi and J. D. Friedman, J. Nucl. Med. 35, 683 (1994).

    Google Scholar 

  10. F. Kalantari, H. Rajabi, and N. Yaghoobi, J. Nucl. Med. Technol. 36, 36 (2008).

    Article  Google Scholar 

  11. W. T.Wang, B. M. W. Tsui, D. S. Lalush, C. Tocharoenchai and E. C. Frey, IEEE Trans. Nucl. Sci. 52, 1227 (2005).

    Article  ADS  Google Scholar 

  12. W. T. Wang, E. C. Frey, B. M. W. Tsui, C. Tocharoenchai and W. H. Baird, IEEE Trans. Nucl. Sci. 49, 680 (2002).

    Article  ADS  Google Scholar 

  13. S. Jang, R. Jaszczak, J. Li, V. Lowe, K. Greer and R. Coleman, in Nuclear Science Symposium and Medical Imaging Conference, 1994 IEEE Conference Record (IEEE, 1994), p. 1493.

    Google Scholar 

  14. K. Knesaurek and J. Machac, Phys. Med. Biol. 45, N167 (2000).

    Article  Google Scholar 

  15. S. C. Moore, R. J. English, C. Syravanh, D. E. Tow, R. E. Zimmerman, K. H. Chan and M. F. Kijewski, IEEE Trans. Nucl. Sci. 42, 1189 (1995).

    Article  ADS  Google Scholar 

  16. M. Paek, J. Lee, D. Lee, J. K. Chung and M. Lee, in Nuclear Science Symposium Conference Record, 2000 IEEE (IEEE, 2000), p. 153.

    Google Scholar 

  17. X. M. Zheng, I. Zubal, J. Seibyl and M. King, IEEE Trans. Nucl. Sci. 51, 2649 (2004).

    Article  ADS  Google Scholar 

  18. B. Helal et al., Eur. J. Nucl. Med. 19, 517 (1992).

    Article  Google Scholar 

  19. I. Buvat, S. Hapdey, H. Benali, A. Todd-Pokropek and R. Di Paola, in Information Processing in Medical Imaging (Springer, Berlin, Heidelberg, 1999), p. 442.

    Book  Google Scholar 

  20. S. Hapdey, M. Soret and I. Buvat, Phys. Med. Biol. 51, 6157 (2006).

    Article  Google Scholar 

  21. S. Shcherbinin, A. Celler, M. Trummer and T. Humphries, Physica Medica 25, 192 (2009).

    Article  Google Scholar 

  22. Y. Du, B. M. Tsui and E. C. Frey, Med. Phys. 34, 3530 (2007).

    Article  Google Scholar 

  23. F. J. Beekman, E. G. Eijkman, M. A. Viergever, G. F. Borm and E. T. Slijpen, IEEE Trans. Nucl. Sci. 40, 31 (1993).

    Article  ADS  Google Scholar 

  24. F. J. Beekman, C. Kamphuis and M. Viergever, IEEE. Trans Med. Imag. 15, 491 (1996).

    Article  Google Scholar 

  25. E. Frey, Z. W. Ju and B. Tsui, IEEE Trans. Nucl. Sci. 40, 1192 (1993).

    Article  ADS  Google Scholar 

  26. E. Frey and B. Tsui, IEEE Trans. Nucl. Sci. 40, 1107 (1993).

    Article  ADS  Google Scholar 

  27. T. Babaie, R. Karimizandi and C. Lucas, Soft. Computing 12, 857 (2008).

    Article  Google Scholar 

  28. A. Al-Zaben and A. Al-Smadi, Phys. Med. Biol. 51, 137 (2005).

    Article  Google Scholar 

  29. M. Kakar, H. Nyström, L. R. Aarup, T. J. Nottrup and D. R. Olsen, Phys. Med. Biol. 50, 4721 (2005).

    Article  Google Scholar 

  30. A. Emam, H. Tonekabonipour and M. Teshnelab, in The International Conference on Systems, Man and Cybernetics (IEEE, 2011), p. 2958.

    Google Scholar 

  31. S. Zaferanlouei, D. Rostamifard and S. Setayeshi, Ann. Nucl. Energy 37, 813 (2010).

    Article  Google Scholar 

  32. Y. Shin, Y. Kim, G. W. Moon and S. W. Choi, J. Mech. Sci. Tech. 19, 1670 (2005).

    Article  Google Scholar 

  33. I. Yilmaz and O. Kaynar, Expert. Syst. Appl. 38, 5958 (2011).

    Article  Google Scholar 

  34. A. Mittal, S. Sharma and D. Kanungo, in Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011 (Springer, 2012), p. 485.

    Book  Google Scholar 

  35. M. Tarjoman, E. Fatemizadeh and K. Badie, Biomed. Eng. App. Bas. C 24, 27 (2012).

    Article  Google Scholar 

  36. C. H. Cheng and L. Y. Wei, Eng. Optimiz. 11, 303 (2010).

    Article  MATH  Google Scholar 

  37. M. O. Efe, in Control Applications, (CCA) & Intelligent Control, (ISIC), 2009 IEEE (IEEE, 2009), p. 689.

    Book  Google Scholar 

  38. S. L. Chiu, J. Intell. Fuzzy. Syst. 2, 267 (1994).

    Article  Google Scholar 

  39. P. Maksud, B. Fertil, C. Rica, G. El Fakhri and A. Aurengo, J. Nucl. Med. 39, 735 (1998).

    Google Scholar 

  40. K. Ogawa and N. Nishizaki, IEEE Trans. Nucl. Sci. 40, 1020 (1993).

    Article  ADS  Google Scholar 

  41. G. El Fakhri, S. Moore and P. Maksud, IEEE Trans. Nucl. Sci. 48, 799 (2001).

    Article  ADS  Google Scholar 

  42. S. Jan, G. Santin, D. Strul, S. Staelens, K. Staelens, D. Autret, S. Avner, R. Barbier, M. Bardies and P. M. Bloomfield, Phys. Med. Biol. 49, 4543 (2004).

    Article  Google Scholar 

  43. J. S. R. Jang, IEEE Trans. Sys. Man. Cyern. B. 23, 665 (1993).

    Article  Google Scholar 

  44. J. S. R. Jang and C. T. Sun, Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence (Prentice-Hall, Upper Saddle River, NY, USA, 1996).

    Google Scholar 

  45. M. Liu, M. Dong and C. Wu, IEEE Trans. Autom. Sci. Eng. 7, 645 (2010).

    Article  Google Scholar 

  46. P. P. Bonissone, V. Badami, K. H. Chiang, P. S. Khedkar, K. W. Marcelle and M. J. Schutten, in Proceedings of the IEEE 1995 Industrial Applications of Fuzzy Logic at General Electric (IEEE, 1995), p. 450.

    Google Scholar 

  47. B. B. Jovanovic, I. S. Reljin and B. D. Reljin, in 7th Seminar of 2004 IEEE Neural Network Applications in Electrical Engineering.

  48. J. Zhai, J. Zhou, L. Zhang, J. Zhao and W. Hong, IEEE Trans. Microw. Theory. Tech. 57, 27 (2009).

    Article  ADS  Google Scholar 

  49. C. S. Lee, in The 2011 International Joint Conference on Neural Networks (IEEE, 2011), p. 2764.

    Book  Google Scholar 

  50. G. Germano and D. S. Berman, Clinical Gated Cardiac SPECT (John Wiely, NY, USA, 1999).

    Google Scholar 

  51. M. R. Ay, M. Shirmohammad, S. Sarkar, A. Rahmim and H. Zaidi, Mo. Imaging Biol. 13, 187 (2011).

    Article  Google Scholar 

  52. P. Refaeilzadeh, L. Tang and H. Liu, “Cross-validation”, in Encyclopedia of Database Systems (Springer, USA, 2009), p. 532.

    Google Scholar 

  53. W. P. Segars, Thesis “Development and application of the new dynamic Nurbs-based Cardiac-Torso (NCAT) phantom”, The University of North Carolina, (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Setayeshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidary, S., Setayeshi, S. & Ghannadi-Maragheh, M. Comparison of an adaptive neuro-fuzzy inference system and an artificial neural network in the cross-talk correction of simultaneous 99mTc / 201Tl SPECT imaging using a GATE Monte-Carlo simulation. Journal of the Korean Physical Society 65, 778–785 (2014). https://doi.org/10.3938/jkps.65.778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.778

Keywords

Navigation