Skip to main content
Log in

Optimization of search window and mask size for non-local means noise reduction algorithm in chest digital tomosynthesis: a phantom study

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Among the parameters of non-local means (NLM) noise reduction algorithm, the search window and mask size have a great influence on the quality of diagnostic medical images. In this study, we aim to optimize the NLM noise reduction algorithm in the chest digital tomosynthesis (CDT) system. The parameters of the NLM algorithm were set to a search window of 11 × 11 to 101 × 101 and a mask size of 3 × 3 to 11 × 11. The quantitative evaluation method of the acquired CDT image used coefficient of variation (COV) and contrast-to-noise ratio (CNR). COV showed improved results as the search window was increased, and CNR showed the best results at a window size of 61 × 61. In addition, we could confirm that the COV and CNR steadily improved as the size of the mask increased. In conclusion, we expect that when applying the NLM noise reduction algorithm to CDT X-ray images, appropriate parameters can be derived and applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Lee, Y.-S. Kim, S. Choi, H. Lee, S. Choi, H.-J. Kim, J. Instrum. (2016). https://doi.org/10.1088/1748-0221/11/01/P01016

    Article  Google Scholar 

  2. S.-H. Chae, J. Lee, C. Won, S.B. Pan, Int. J. Bio-Sci. Bio-Technol. 6, 81 (2014)

    Google Scholar 

  3. A. Ferrari, L. Bertolaccini, P. Solli, P.O.D. Salvia, D. Scaradozzi, Ann. Transl. Med. 6, 91 (2018)

    Article  Google Scholar 

  4. M. Diwakar, M. Kumar, Biomed. Signal Process. Control 42, 73 (2018)

    Article  Google Scholar 

  5. L.I. Rudin, S. Osher, E. Fatemi, Physica D D 60, 259 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Z. Li, L. Yu, J.D. Trzasko, D.S. Lake, D.J. Blezek, J.G. Fletcher, C.H. McCollough, A. Manduca, Med. Phys. 41, 011908 (2014)

    Article  Google Scholar 

  7. J.-K. Park, S.-H. Kang, M. Park, D. Lee, K. Kim, Y. Lee, Nucl. Instrum. Methods Phys. Res. A 1029, 166404 (2022)

    Article  Google Scholar 

  8. M. Junda, H. Muller, H. Friedrich-Nel, Health SA. (2021). https://doi.org/10.4102/hsag.v26i0.1622

    Article  Google Scholar 

  9. Z. Brady, H. Scoullar, B. Grinsted, K. Ewert, H. Kavnoudias, A. Jarema, J. Crocker, R. Wills, G. Houston, M. Law, D. Varma, Phys. Eng. Sci. Med. 43, 765 (2020)

    Article  Google Scholar 

  10. A. Buades, B. Coll, J.M. Morel, Multiscale Model. Simul. 4, 490 (2005)

    Article  MathSciNet  Google Scholar 

  11. A. Buades, B. Coll. J.-M. Morel, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (2005) DOI: https://doi.org/10.1109/CVPR.2005.38

  12. M. Elhamiasl, J. Nuyts, Med. Phys. 65, 135010 (2020)

    Google Scholar 

  13. S. Singh, M.K. Kalra, M.A. Moore, R. Shailam, B. Liu, T.L. Toth, E. Grant, S.J. Westra, Radiology 252, 200 (2009)

    Article  Google Scholar 

  14. N. Sollmann, K. Mei, D.M. Hedderich, C. Maegerlein, F.K. Kopp, M.T. Loffler, C. Zimmer, E.J. Rummeny, J.S. Kirschke, T. Baum, P.B. Noel, Eur. Radiol. 29, 3606 (2019)

    Article  Google Scholar 

  15. H.V. Bhujle, B.H. Vadavadagi, Biomed. Signal Process. Control 47, 252 (2019)

    Article  Google Scholar 

  16. Y.-C. Heo, K. Kim, Y. Lee, Appl. Sci. (2019). https://doi.org/10.3390/app10207028

    Article  Google Scholar 

  17. M. Puttagunta, S. Ravi, Multimed. Tools Appl. 80, 24365 (2021)

    Article  Google Scholar 

  18. Y.R. Park, Y.J. Kim, W. Ju, K. Nam, S. Kim, K.G. Kim, Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-95748-3

    Article  Google Scholar 

  19. J.W. Seo, S.H. Lim, J.G. Jeong, Y.J. Kim, K.G. Kim, J.Y. Jeon, Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-93017-x

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Gachon University Research Fund 2023 (GCU-202303880001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun-Woo Jeong or Youngjin Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Park, M., Lim, S. et al. Optimization of search window and mask size for non-local means noise reduction algorithm in chest digital tomosynthesis: a phantom study. J. Korean Phys. Soc. 84, 566–572 (2024). https://doi.org/10.1007/s40042-024-01007-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-024-01007-9

Keywords

Navigation