Skip to main content
Log in

Fano interference in a parallel double quantum dot interferometer modified by the decoherence effect

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

By introducing floating leads to mimic the decoherence mechanism, we study the influence of the decoherence effect on the Fano interference in electron transport through a parallel double quantum dot (QD) structure. We find that when the decoherence effect is incorporated in the resonant channel, the Fano interference can apparently be suppressed, especially in the case of ϕ = π (ϕ is the phase due to the presence of a local magnetic flux). On the other hand, if the decoherence effect is introduced into the nonresonant channel, the Fano antiresonance is independent of the strengthening of the decoherence effect. If the magnetic flux is absent, the Fano antiresonance valley will be widened by the decoherence. When ϕ = π, the Fano lineshape in the conductance spectrum is robust. By analyzing the electron motion is this system, we clarified all the results. We hope that these results will be helpful for relevant experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, in Mesoscopic Electron Transport, Proceedings of the NATO Advanced Study Institute on Mesoscopic Electron Transport, Series E345, edited by L. L. Sohn, L. P. Kouwenhoven and G. Schön (Kluwer, Dordrecht, 1997).

  2. S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).

    Article  ADS  Google Scholar 

  3. G. Hackenbroich, Phys. Rep. 343, 463 (2001).

    Article  ADS  MATH  Google Scholar 

  4. A. Yacoby, M. Heiblum, D. Mahalu and H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995).

    Article  ADS  Google Scholar 

  5. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  MATH  Google Scholar 

  6. K. Kobayashi, H. Aikawa, S. Katsumoto and Y. Iye, Phys. Rev. Lett. 88, 256806 (2002); M. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto and Y. Iye, Phys. Rev. Lett. 95, 066801 (2005.

    Article  ADS  Google Scholar 

  7. J. Göres, D. Goldhaber-Gordon, S. Heemeyer and M. A. Kastner, Phys. Rev. B 62, 2188 (2000).

    Article  ADS  Google Scholar 

  8. I. G. Zacharia, D. Goldhaber-Gordon, G. Granger, M. A. Kastner, Y. B. Khavin, H. Shtrikman, D. Mahalu and U. Meirav, Phys. Rev. B 64, 155311 (2001).

    Article  ADS  Google Scholar 

  9. B. R. Bułka and P. Stefański, Phys. Rev. Lett. 86, 5128 (2001).

    Article  ADS  Google Scholar 

  10. B. Kubala and J. König, Phys. Rev. B 65, 245301 (2002).

    Article  ADS  Google Scholar 

  11. M. L. Ladron de Guevara, F. Claro and P. A. Orellana, Phys. Rev. B 67, 195335 (2003).

    Article  ADS  Google Scholar 

  12. H. Lu, R. Lü and B. F. Zhu, Phys. Rev. B 71, 235320 (2005).

    Article  ADS  Google Scholar 

  13. A. A. Clerk, X. Waintal and P. W. Brouwer, Phys. Rev. Lett. 86, 4636 (2001).

    Article  ADS  Google Scholar 

  14. S. Tanaka, S. Garmon, G. Ordonez and T. Petrosky, Phys. Rev. B 76, 153308 (2007); B. H. Wu and J. C. Cao, J. Phys.: Condens. Matter 16, 8285 (2004).

    Article  ADS  Google Scholar 

  15. Y. J. Xiong and S. J. Xiong, Phys. Rev. B 65, 201302 (2002); K. H. Ahn and P Mohanty, Phys. Rev. B 63, 195301 (2001).

    Article  ADS  Google Scholar 

  16. L. Liu, Y. Du, H. Zhou and T. Lin Phys. Rev. B 54, 1953 (1996).

    Article  ADS  Google Scholar 

  17. A. Ueda and M. Eto, Phys. Rev. B 73, 235353 (2006).

    Article  ADS  Google Scholar 

  18. J. König and Y. Gefen, Phys. Rev. Lett. 86, 3855 (2001); Phys. Rev. B 65, 045316 (2002).

    Article  ADS  Google Scholar 

  19. M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986); H. Q. Xu, Appl. Phys. Lett. 78, 2064 (2001).

    Article  ADS  Google Scholar 

  20. W. Gong, Y. Zheng, Y. Liu and T. Lü, Phys. Rev. B 73, 245329 (2006).

    Article  ADS  Google Scholar 

  21. Y. Liu, Y. Zheng, W. Gong and T. Lü, (unpublished).

  22. Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992); A. P. Jauho, N. S. Wingreen and Y. Meir, Phys. Rev. B 50, 5528 (1994).

    Article  ADS  Google Scholar 

  23. S. Datta, Electron Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, England, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jiang Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CJ., Ren, FZ. & Gong, WJ. Fano interference in a parallel double quantum dot interferometer modified by the decoherence effect. Journal of the Korean Physical Society 64, 872–878 (2014). https://doi.org/10.3938/jkps.64.872

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.872

Keywords

Navigation