Skip to main content
Log in

Transport properties of a quantum dot and a quantum ring in series

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The decoherence mechanism of an electron interferometer is studied by using a serial quantum dot and ring device. By coupling a quantum dot to a quantum ring (closed-loop electron interferometer), we were able to observe both Coulomb oscillations and Aharonov-Bohm interference simultaneously. The coupled device behaves like an ordinary double quantum dot at zero magnetic field while the conductance of the Coulomb blockade peak is modulated by the electron interference at finite magnetic fields. By injecting one electron at a time (by exploiting the sequential tunneling of a quantum dot) into the interferometer, we were able to study the visibility of the electron interference at non-zero bias voltage. The visibility was found to decay rapidly as the electron energy was increased, which was consistent with the recently reported result for an electron interferometer. However, the lobe pattern and the sudden phase jump became less prominent. These results imply that the lobe pattern and the phase jump in an electron interferometer may be due to electron interactions inside the interferometer, as is predicted by the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Meirav, M. A. Kastner and S. J. Wind, Phys. Rev. Lett. 65, 771 (1990).

    Article  ADS  Google Scholar 

  2. L. P. Kouwenhoven, D. G. Austing and S. Tarucha, Rep. Prog. Phys. 64, 701 (2001).

    Article  ADS  Google Scholar 

  3. A. Yacoby, M. Heiblum, V. Umansky, H. Shtrikman and D. Mahalu, Phys. Rev. Lett. 73, 3149 (1994).

    Article  ADS  Google Scholar 

  4. Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu and H. Shtrikman, Nature 422, 415 (2003).

    Article  ADS  Google Scholar 

  5. F. H. L. Koppens et al., Nature 442, 766 (2006).

    Article  ADS  Google Scholar 

  6. J. R. Petta et al., Science 309, 2180 (2005).

    Article  ADS  Google Scholar 

  7. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav and M. A. Kastner, Nature 391, 157 (1998).

    Article  ADS  Google Scholar 

  8. S. De Franceschi, S. Sasaki, J. M. Elzerman, W. G. van der Wiel, S. Tarucha and L. P. Kouwenhoven, Phys. Rev. Lett. 86, 878 (2001).

    Article  ADS  Google Scholar 

  9. W. G. van der Wiel et al., Rev. Mod. Phys. 75, 1 (2003).

    Article  Google Scholar 

  10. M. Seo, H. K. Choi, S-Y. Lee, N. Kim, Y. Chung, H-S. Sim, V. Umansky and D. Mahalu, Phys. Rev. Lett. 110, 046803 (2013).

    Article  ADS  Google Scholar 

  11. I. Neder, M. Heiblum, Y. Levinson, D. Mahalu and V. Umansky, Phys. Rev. Lett. 96, 016804 (2006).

    Article  ADS  Google Scholar 

  12. S-C. Youn, H-W. Lee and H-S. Sim, Phys. Rev. Lett. 100, 196807 (2008).

    Article  ADS  Google Scholar 

  13. E. V. Sukhorukov and V. V. Cheianov, Phys. Rev. Lett. 99, 156801 (2007).

    Article  ADS  Google Scholar 

  14. A. Yacoby, R. Schuster and M. Heiblum, Phys. Rev. B 53, 9583 (1996).

    Article  ADS  Google Scholar 

  15. A. Fuhrer et al., Nature 413, 822 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunchul Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, M., Chung, Y. Transport properties of a quantum dot and a quantum ring in series. Journal of the Korean Physical Society 72, 138–143 (2018). https://doi.org/10.3938/jkps.72.138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.138

Keywords

Navigation