Skip to main content
Log in

Structural properties of fluids with short-range attractive and repulsive tails: Inverse temperature expansion

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Thermodynamic perturbation theories based on a power series in the inverse temperature have been proposed for studying the structure of square-well and square-shoulder fluids in various ranges, and the results have compared with those from computer simulations. The perturbation theory based on the hard-sphere reference system seems to reproduce the simulation data at high temperature. However, it fails in the region of low density and low temperature. On the other hand, the perturbation theory based on the high-temperature reference system, which incorporates both repulsive and short-range attractive/repulsive tails is in excellent agreement with simulation results and is more accurate than the perturbation theory based on the hard-sphere reference system. In particular, the perturbation theory based on the high-temperature reference system is the most successful for a square-shoulder fluid with a purely repulsive potential and is more accurate than the rational function approximation of Yuste et al. [Mol. Phys. 109 987 (2011)] for the whole density range. In this case, the convergence of the power series in the inverse temperature is seen to be quiet satisfactory even for low density and low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 589 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  2. J.-P. Hansen and I. R. McDonald, Theory of simple liquids, 3rd ed. (Academic Press, London, 2006).

    Google Scholar 

  3. D. Henderson, L. Mier-Y-Terán and L. Blum,, Fluid Phase Equilib. 130, 65 (1997).

    Article  Google Scholar 

  4. K. P. Shukla, J. Chem. Phys. 112, 10358 (2000).

    Article  ADS  Google Scholar 

  5. E. Waisman, Mol. Phys. 25, 45 (1973).

    Article  ADS  Google Scholar 

  6. Y. Tang and B. C.-Y. Lu, J. Chem. Phys. 99, 9828 (1993); Y. Tang, J. Chem. Phys. 118 4140 (2003); Y. Tang, J. Chem. Phys. 127, 164504 (2007).

    Article  ADS  Google Scholar 

  7. S. P. Hlushak, A. Trokhymchuk and S. Sokolowski, J. Chem. Phys. 130, 234511 (2009); J. Chem. Phys. 134, 114101 (2011).

    Article  ADS  Google Scholar 

  8. S. P. Hlushak, P. A. Hlushak and A. Trokhymchuk, J. Chem. Phys. 138, 164107 (2013).

    Article  ADS  Google Scholar 

  9. A. S. Ramana and S. V. G. Menon, Phys. Rev. E 87, 022101 (2013).

    Article  ADS  Google Scholar 

  10. A. S. Ramana, J. Chem. Phys. 139, 044106 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Zhou, Phys. Rev. E 74, 031119 (2006); 77, 041110 (2008).

    Article  ADS  Google Scholar 

  12. M. Khanpour, Phys. Rev. E 83, 021203 (2011).

    Article  ADS  Google Scholar 

  13. S. Zhou, Phys. Rev. E 79, 011126 (2009); J. Chem. Phys. 130, 054103 (2009).

    Article  ADS  Google Scholar 

  14. R. Melnyk, I. Nezbeda, D. Henderson and A. Trokhymchuk, Fluid Phase Equilib. 279, 1 (2009).

    Article  Google Scholar 

  15. E.-Y. Kim, S.-C. Kim and B.-S. Seong, J. Chem. Phys. 135, 034505 (2011).

    Article  ADS  Google Scholar 

  16. S. B. Yuste and A. Santos, J. Chem. Phys. 101, 2355 (1994).

    Article  ADS  Google Scholar 

  17. A. Lang, G. Kahl, C.N. Likos, H. Löwen and M. Watzlawek,, J. Phys.: Condens. Matter 11, 10143 (1999).

    ADS  Google Scholar 

  18. A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97, 1225 (1999); A. Benavides, L. del Pino, A. Gil-Villegas and F. Sastre, J. Chem. Phys. 125, 204715 (2006).

    Article  ADS  Google Scholar 

  19. G. Malescio, G. Franzese, G. Pellicane, A. Skibinsky, S. V. Buldyrev and H. E. Stanley, J. Phys.: Condens. Matter 14, 2193 (2002); A. Skibinsky, S. V. Buldyrev, G. Franzese, G. Malescio and H. E. Stanley, Phys. Rev. E 69, 061206 (2004); G. Malescio, G. Franzese, A. Skibinsky, S. V. Buldyrev and H. E. Stanley, Phys. Rev. E 71, 061504 (2005).

    ADS  Google Scholar 

  20. J. Largo, J. R. Solana, S. B. Yuste and A. Santos, J. Chem. Phys. 122, 084510 (2005).

    Article  ADS  Google Scholar 

  21. L. A. Cervantes, A. L. Benavides and F. del Rio, J. Chem. Phys. 126, 084507 (2007).

    Article  ADS  Google Scholar 

  22. I. Guillén-Escamilla, M. Chávez-Páez and R. Castañeda-Priego, J. Phys.: Condens. Matter 19, 086224 (2007).

    ADS  Google Scholar 

  23. E. B. El Mendoub, J. F. Wax, I. Charpentier and N. Jakse, Mol. Phys. 106, 2667 (2008).

    Article  ADS  Google Scholar 

  24. I. Guillén-Escamilla, E. Schöll-Paschinger and R. Castañeda-Priego, Mol. Phys. 108, 141 (2010)

    Article  ADS  Google Scholar 

  25. I. Guillén-Escamilla, E. Schöll-Paschinger and R. Castañeda-Priego, Physica A 390, 3637 (2011); A. Loredo-Osti and R. Castaneda-Priego, J. Nanofluids 1, 3636 (2012)

    Article  ADS  Google Scholar 

  26. W. Rysko, O. Pizio, A. Patrykiejew and S. Sokolowski, J. Chem. Phys. 129, 124502 (2008); A. Patrykiejew, O. Pizio, W. Rysko and S. Sokolowski, J. Chem. Phys. 132, 164702 (2010).

    Article  ADS  Google Scholar 

  27. S. B. Yuste, A. Santos and M. López de Haro, Mol. Phys. 109, 987 (2011).

    Article  ADS  Google Scholar 

  28. A. Santos, S. B. Yuste and M. López de Haro, Condens. Matter Phys. 15, 23602 (2012).

    Article  Google Scholar 

  29. A. Santos, S. B. Yuste, M. López de Haro, M. Bárcenas and P. Orea, arXiv:1304.3817 (cond-mat.soft) (2013)

  30. J. M. Bomont, in Recent Advances in the Field of Integral Equation Theories, Adv. Chem. Phys. vol. 139, edited by S.A. Rice (John Wiley and Sons, NJ, 2008).

    Google Scholar 

  31. A. Malijvesky and S. Labik, Mol. Phys. 60, 663 (1987).

    Article  ADS  Google Scholar 

  32. E.-Y. Kim and S.-C. Kim, J. Mol. Liq. 187, 326 (2013).

    Article  Google Scholar 

  33. G. Sarkisov, J. Chem. Phys. 114, 9496 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Chul Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, EY., Kim, SC. Structural properties of fluids with short-range attractive and repulsive tails: Inverse temperature expansion. Journal of the Korean Physical Society 64, 844–851 (2014). https://doi.org/10.3938/jkps.64.844

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.844

Keywords

Navigation