Skip to main content
Log in

Monte carlo simulations of the pseudo-spin ising model for hydrogen-bonded ferroelectrics

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Monte Carlo (MC) simulations are performed for hydrogen-bonded-type ferroelectrics by using a three dimensional pseudo-spin Ising model. The pseudo-spin interaction strengths V and U are related to the Slater-Takagi energy parameters ɛ 0 and ɛ 1 via U = (ɛ 0ɛ 1)/2 and V = (2ɛ 1ɛ 0)/4. The phase transition temperature and the longitudinal and transverse dielectric constants are calculated as functions of interaction ratio R = − U/V, in the range of R from 0 to 1. According to the MC simulations, the longitudinal dielectric constant exhibits a ferroelectric phase transition while the transverse constant exhibits behavior associated with an antiferroelectric transition. The transverse dipole moments obtained from a mean-field approximation and the domain motion in the microscopic structure are discussed in view of hydrogen-ion bombardment experiments on KH2PO4 crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Havlin, Ferroelectrics 71, 183 (1987).

    Article  Google Scholar 

  2. R. Blinc, M. Burgar, V. Rutar, J. Seliger and I. Zupančič, Phys. Rev. Lett. 38, 9292 (1977)

    Article  ADS  Google Scholar 

  3. H. Sugimoto and S. Ikeda, J. Phys.: Condens. Matter 5, 7409 (1993).

    ADS  Google Scholar 

  4. D. Merunka and B. Rakvin, Chem. Phys. Lett. 393, 558 (2004).

    Article  ADS  Google Scholar 

  5. Y. Ishibashi, M. Iwata and R. Blinc, Ferroelectrics 427, 56 (2012).

    Article  Google Scholar 

  6. T. J. P. Penna and P. M. C. de Oliveira, J. Stat. Phys. 61, 933 (1990).

    Article  ADS  Google Scholar 

  7. K. Kim and T. L. Einstein, Phys. Rev. B 83, 245414 (2011).

    Article  ADS  Google Scholar 

  8. H. Ishizuka, Y. Motome, N. Furukawa and S. Suzuki, Phys. Rev. B 84, 064120 (2011).

    Article  ADS  Google Scholar 

  9. R. Blinc and B. Zeks, Ferroelectrics 72, 193 (1987).

    Article  Google Scholar 

  10. H. Sompolinsky and S. Havlin, Phys. Rev. B 16, 3223 (1977).

    Article  ADS  Google Scholar 

  11. J. Nasu, S. Todo and S. Ishihara, Phys. Rev. B 85, 205141 (2012).

    Article  ADS  Google Scholar 

  12. D. C. Rapaport and S. Havlin, Solid State Commun. 29, 611 (1979).

    Article  ADS  Google Scholar 

  13. J. R. Reitz, F. J. Milford and R. W. Christy, Foundations of Electromagnetic Theory (Addison-Wesley, USA, 2008).

    Google Scholar 

  14. J. D. Jackson, Classical Electrodynamics (Wiley, USA, 1998).

    Google Scholar 

  15. R. R. Levitskii, I. R. Zachek, A. S. Vdovych and S. I. Sorokov, Condens. Matter Phys. 12, 75 (2009).

    Article  Google Scholar 

  16. S. Havlin, E. Litov and H. Sompolinsky, Phys. Rev. B 13, 4999 (1976).

    Article  ADS  Google Scholar 

  17. S. Havlin, E. Litov and E. A. Uehling, Phys. Rev. B 9, 1024 (1974).

    Article  ADS  Google Scholar 

  18. S. H. Kim, K. W. Lee, B. H. Oh, J. J. Kweon and C. E. Lee, Appl. Phys. Lett. 91, 122912 (2007).

    Article  ADS  Google Scholar 

  19. S. H. Kim, B. H. Oh, K. W. Lee, C. E. Lee and K. S. Hong, Phys. Rev. B 73, 134114 (2006).

    Article  ADS  Google Scholar 

  20. C. S. Liu, N. Kioussis, S. G. Demos and H. B. Radousky, Phys. Rev. Lett. 91, 015505 (2003).

    Article  ADS  Google Scholar 

  21. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, USA, 1999).

    MATH  Google Scholar 

  22. V. H. Schmidt, G. Bohannan, D. Arbogast and G. Tuthill, J. Phys. Chem. Solids 61, 283 (2000).

    Article  ADS  Google Scholar 

  23. F. Kagawa, K. Haahara, S. Horiuchi and Y. Tokura, Phys. Rev. B 85, 220101 (2012).

    Article  ADS  Google Scholar 

  24. S. H. Kim, B. H. Oh, J. H. Han, C. E. Lee, J. Y. Choi, K. D. Hahn, C. Y. Jang, B. H. Youn and J. Kim, Curr. Appl. Phys. 9, 1307 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Hun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SH. Monte carlo simulations of the pseudo-spin ising model for hydrogen-bonded ferroelectrics. Journal of the Korean Physical Society 64, 415–418 (2014). https://doi.org/10.3938/jkps.64.415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.415

Keywords

Navigation