Skip to main content
Log in

Structural phase transition in quasi-one-dimensional H-bonded ferroelectric PbHPO4 (LHP) crystal: Quantum-chemical analysis

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic features of the structural phase transition (SPT) in the H-bonded ferroelectric material PbHPO4 (LHP) have been considered using a pseudo-spin Ising model with inclusion of tunneling and long-range effects. To determine all pseudo-spin Hamiltonian (PSH) parameters necessary for analysis of the SPT—Slater parameters and tunneling integrals, a technique based on an independent quantum-chemical method of their finding was applied. A simplified scheme has been suggested for selecting a model cluster, which makes it possible to use higher-level methods (CCSD and QCISD with the 6-311+G** basis set) in calculations of double-well potential profiles and PSH parameters. The computation results have been discussed in the framework of two statistical models—in the molecular field approximation and using the Bethe cluster method. The critical temperature of the transition of LHP has been evaluated and it has been demonstrated that experimental data can be semiquantitatively reproduced only in the statistical cluster approximation with inclusion of tunneling and long-range effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Negran, A. M. Glass, C. S. Brickenkamp, et al., Ferroelectrics 6, 179 (1974).

    Article  CAS  Google Scholar 

  2. R. J. Nelmes and R. N. P. Choudhary, Ferroelectrics 21, 467 (1978).

    Article  CAS  Google Scholar 

  3. R. J. Nelmes, Ferroelectrics 24, 237 (1980).

    Article  CAS  Google Scholar 

  4. W. L. Zhong and R. J. Nelmes, Ferroelectrics 39, 1120 (1981).

    Article  Google Scholar 

  5. B. Pasquier, F. Fillaux, and J. Tomkinson, Physica A 213/214, 658 (1995).

    Article  Google Scholar 

  6. P. Restori, Z. Tun, R. J. Nelmes, et al., J. Phys. C, Solid State Phys. 20, L591 (1987).

    Article  CAS  Google Scholar 

  7. A. Katrusiak and R. J. Nelmes, J. Phys.: Condens. Matter 1, 10165 (1989).

    CAS  Google Scholar 

  8. M. I. McMahon, R. J. Nelmes, W. F. Kuhs, et al., Nature 348, 317 (1990).

    Article  CAS  Google Scholar 

  9. Y. Nakamoto, T. Kagayama, K. Shimizu, et al., Physica B 359, 1303 (2005).

    Article  Google Scholar 

  10. F. Smutny and J. Fousek, Ferroelectrics 21, 385 (1978).

    Article  CAS  Google Scholar 

  11. J. Nakatani, J. Phys. Soc. Jpn. 56, 2542 (1987).

    Article  CAS  Google Scholar 

  12. H. Happ, P. Wollenburg, M. Briskot, et al., Phys. Status Solidi B 168, 643 (1991).

    Article  CAS  Google Scholar 

  13. H. Happ and M. Briskot, Ann. Phys. 1, 399 (1992).

    Google Scholar 

  14. K. Deguchi, J. Phys. Soc. Jpn. 65, 4076 (1996).

    Article  CAS  Google Scholar 

  15. A. V. Sapronova, K. Weron, A. P. Sukhorukov, et al., Ferroelectics Lett. 28, 1 (2000).

    Article  Google Scholar 

  16. J. Seliger, V. Zagar, and R. Blinc, Phys. Lett. A 93, 149 (1983).

    Article  Google Scholar 

  17. F. Ermark, B. Topic, U. Haeberlen, et al., J. Phys.: Condens. Matter 1, 54891 (1989).

    Google Scholar 

  18. F. Ermark and U. Haeberlen, J. Phys.: Condens. Matter 3, 1909 (1991).

    CAS  Google Scholar 

  19. R. Mizaras, J. Grigas, V. Valevicius, et al., Ferroelectrics 158, 357 (1994).

    Article  CAS  Google Scholar 

  20. M. Zgonik, M. Copic, and H. Arend, J. Phys. C, Solid State Phys. 20, L565 (1987).

    Article  CAS  Google Scholar 

  21. K. Noba and Y. Kayanuma, Phys. Rev. B 60, 4418 (1999).

    Article  CAS  Google Scholar 

  22. T. Fuyuki, K. Sasaki, and N. Ohno, J. Lumin. 112, 250 (2005).

    Article  CAS  Google Scholar 

  23. B. B. Lavrencic and J. Petzelt, J. Chem. Phys. 9, 3890 (1977).

    Google Scholar 

  24. D. J. Lockwood, N. Ohno, R. J. Nelmes, et al., J. Phys. C, Solid State Phys. 18, L559 (1985).

    Article  CAS  Google Scholar 

  25. N. Ohno and D. J. Lockwood, J. Chem. Phys. 83, 4374 (1985).

    Article  CAS  Google Scholar 

  26. N. Ohno, D. J. Lockwood, and M. H. Kuok, J. Chem. Phys. 84, 6599 (1986).

    Article  CAS  Google Scholar 

  27. N. Ohno, D. J. Lockwood, M. H. Kuok, J. Phys. C, Solid State Phys. 20, 1559 (1987).

    Article  Google Scholar 

  28. N. Ohno, D. J. Lockwood, and M. H. Kuok, J. Phys. C, Solid State Phys. 20, 3751 (1987).

    Article  Google Scholar 

  29. N. Ohno and D. J. Lockwood, Ferroelectrics 137, 181 (1992).

    Article  Google Scholar 

  30. S. Shin, M. Ishigame, K. Deguchi, et al., Solid State Commun. 65, 749 (1988).

    Article  CAS  Google Scholar 

  31. S. Shin, M. Ishigame, K. Deguchi, et al., Phys. Rev. B 41, 10155 (1990).

    Article  CAS  Google Scholar 

  32. B. B. Lavrencic, M. Zgonik, M. Copic, et al., Ferroelectrics 21, 325 (1978).

    Article  CAS  Google Scholar 

  33. M. H. Kuok, S. C. Ng, and D. J. Lockwood, Phys. Rev. B 51, 8005 (1995).

    Article  CAS  Google Scholar 

  34. J. Kroupa, J. Petzelt, G. V. Kozlov, et al., Ferroelectrics 21, 387 (1978).

    Article  CAS  Google Scholar 

  35. E. J. Kock and H. Happ, Phys. Status Solidi B 97, 239 (1980).

    Article  CAS  Google Scholar 

  36. H. Happ, D. Schuster, and U. Doebler, Solid State Commun. 56, 417 (1985).

    Article  CAS  Google Scholar 

  37. R. Blinc, H. Arend, and A. Kanduser, Phys. Status Solidi B 74, 425 (1976).

    Article  CAS  Google Scholar 

  38. A. V. Carvalho and S. R. Salinas, J. Phys. Soc. Jpn. 44, 238 (1978).

    Article  Google Scholar 

  39. E. Matsushita, J. Phys. Soc. Jpn. 62, 2074 (1993).

    Article  CAS  Google Scholar 

  40. B. K. Chaudhuri, S. Ganguli, and D. Nath, Phys. Rev. B 23, 2308 (1981).

    Article  CAS  Google Scholar 

  41. J. M. Wesselinowa, Phys. Rev. B 49, 3098 (1994).

    Article  CAS  Google Scholar 

  42. J. M. Wesselinowa and A. T. Apostolov, Phys. Status Solidi B 203, 53 (1997).

    Article  CAS  Google Scholar 

  43. Y. A. Shchur, Phys. Status Solidi 1, 102 (2009).

    Article  Google Scholar 

  44. I. R. Zachec, Y. A. Shchur, R. R. Levitskii, et al., Physica B 452, 152 (2014).

    Article  Google Scholar 

  45. V. I. Zinenko, Fiz. Tverd. Tela 21, 187 (1979).

    Google Scholar 

  46. V. I. Zinenko, Ferroelectrics 63, 179 (1985).

    Article  CAS  Google Scholar 

  47. A. A. Levin and S. P. Dolin, Russ. J. Coord. Chem. 24, 270 (1996).

    Google Scholar 

  48. A. A. Levin, S. P. Dolin, and T. Yu. Mikhailova, Phys. Solid State 51, 1515 (2009).

    Article  Google Scholar 

  49. A. A. Levin, S. P. Dolin, and T. Yu. Mikhailova, J. Mol. Struct. 972, 115 (2010).

    Article  Google Scholar 

  50. M. I. McMahon, R. O. Piltz, and R. J. Nelmes, Ferroelectrics 108, 277 (1990).

    Article  CAS  Google Scholar 

  51. V. G. Vaks, Introduciton to the Microscopic Theory of Ferroelectrics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  52. R. Blintz and B. Jaeksch, Ferroelectrics and Antiferroelectrics (Mir, Moscow, 1975).

    Google Scholar 

  53. B. A. Strukov and A. P. Levanyuk, Basic Physics of Ferroelectricity in Crystals (Nauka, Moscow, 1995).

    Google Scholar 

  54. S. P. Dolin, I. S. Flyagina, M. V. Tremasova, et al., Int. J. Quant. Chem. 107, 2409 (2007).

    Article  CAS  Google Scholar 

  55. S. P. Dolin, T. Yu. Mikhailova, M. V. Solin, et al., Int. J. Quant. Chem. 77, 2010 (2010).

    Google Scholar 

  56. A. A. Levin, S. P. Dolin, and T. Yu. Mikhailova, J. Phys. Conf. Ser. 428, 012025 (2013).

    Article  Google Scholar 

  57. A. A. Levin and P. N. D’yachkov, Heteroligand Molecular Systems (Taylor&Francis, London, 2002).

    Google Scholar 

  58. S. P. Dolin, T. Yu. Mikhailova, N. N. Breslavskaya, and A. A, Levin, Int. J. Quant. Chem. 116, 202 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Dolin.

Additional information

Original Russian Text © S.P. Dolin, T.Yu. Mikhailova, N.N. Breslavskaya, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 7, pp. 934–943.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolin, S.P., Mikhailova, T.Y. & Breslavskaya, N.N. Structural phase transition in quasi-one-dimensional H-bonded ferroelectric PbHPO4 (LHP) crystal: Quantum-chemical analysis. Russ. J. Inorg. Chem. 62, 935–943 (2017). https://doi.org/10.1134/S003602361707004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602361707004X

Navigation