Skip to main content
Log in

Hydrodynamic description for the pseudorapidity distributions of the charged particles produced in nucleus+nucleus collisions at high energy

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

By using the revised Landau hydrodynamic model and taking into account the effect of leading particles, we discuss the pseudorapidity distributions of the charged particles produced in high-energy heavy-ion collisions. The leading particles are assumed to have the rapidity distributions with Gaussian forms with the normalization constant being equal to the number of participants, which can be figured out in theory. The results from the revised Landau hydrodynamic model, together with the contributions from leading particles, were found to be consistent with the experimental data obtained by the PHOBOS Collaboration on RHIC (Relativistic Heavy Ion Collider) at BNL (Brookhaven National Laboratory) in different centrality Cu+Cu and Au+Au collisions at high energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Y. Ollitrault, Phys. Rev. D 46, 229 (1992).

    Article  ADS  Google Scholar 

  2. PHENIX Collaboration (S. S. Adler et al.), Phys. Rev. Lett. 91, 182301 (2003).

    Article  Google Scholar 

  3. ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 107, 032301 (2011).

    Article  ADS  Google Scholar 

  4. C. Y. Wong, Phys. Rev. C 78, 054902 (2008).

    Article  ADS  Google Scholar 

  5. Z. J. Jiang, Q. G. Li and H. L. Zhang, J. Phys. G: Nucl. Part. Phys. 40, 025101 (2013).

    Article  ADS  Google Scholar 

  6. T. Csörgő, M. I. Nagy and M. Csanád, Phys. Lett. B 663, 306 (2008).

    Article  ADS  Google Scholar 

  7. M. I. Nagy, T. Csörgő and M. Csanád, Phys. Rev. C 77, 024908 (2008).

    Article  ADS  Google Scholar 

  8. M. Csanád, M. I. Nagy and T. Csörgő, Eur. Phys. J. ST 155, 19 (2008).

    Article  Google Scholar 

  9. K. G. S. Edward and S. S. Alexander, Eur. Phys. J. C 70, 533 (2010).

    Article  Google Scholar 

  10. C. Gale, S. Jeon and B. Schenke, Intern. J. Mod. Phys. A 28, 1340011 (2013).

    Article  ADS  Google Scholar 

  11. B. Schenke, S. Jeon and C. Gale, Phys. Rev. C 85, 024901 (2012).

    Article  ADS  Google Scholar 

  12. A. Bialas, R. A. Janik and R. Peschanski, Phys. Rev. C 76, 054901 (2007).

    Article  ADS  Google Scholar 

  13. A. Bialas and R. Peschanski, Phys. Rev. C 83, 054905 (2011).

    Article  ADS  Google Scholar 

  14. G. Beuf, R. Peschanski and E. N. Saridakis, Phys. Rev. C 78, 064909 (2008).

    Article  ADS  Google Scholar 

  15. P. Steinberg, Nucl. Phys. A 752, 423 (2005).

    Article  ADS  Google Scholar 

  16. C. Nonaka and Steffen A. Bass, Phys. Rev. C 75, 014902 (2007).

    Article  ADS  Google Scholar 

  17. C. Shen, U. Heinz, P. Huovinen and H. Song, Phys. Rev. C 82, 054904 (2010).

    Article  ADS  Google Scholar 

  18. H. Song, Steffen A. Bass, U. Heinz, T. Hirano and C. Shen, Phys. Rev. Lett. 106, 192301 (2011).

    Article  ADS  Google Scholar 

  19. PHOBOS Collaboration (B. Alver et al.), Phys. Rev. Lett. 102, 142301 (2009).

    Article  Google Scholar 

  20. PHOBOS Collaboration (B. Alver et al.), Phys. Rev. C 83, 024913 (2011).

    Article  Google Scholar 

  21. PHOBOS Collaboration (B. B. Back et al.), Phys. Rev. C 74, 021901 (2006).

    Article  Google Scholar 

  22. PHOBOS Collaboration (B. B. Back et al.), Phys. Rev. Lett. 93, 082301 (2004).

    Article  Google Scholar 

  23. PHOBOS Collaboration (B. B. Back et al.), Phys. Rev. Lett. 94, 082304 (2005).

    Article  Google Scholar 

  24. PHOBOS Collaboration (P. A. Steinberg et al.), Nucl. Phys. A 715, 490c (2003).

    Article  ADS  Google Scholar 

  25. S. Borsányi, G. Endrődi, Z. Fodor, A. Jakovác, S. D. Katz, S. Krieg, C. Ratti and K. K. Szabó, J. High Energy Phys. 11, 77 (2010).

    Article  ADS  Google Scholar 

  26. PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 98, 162301 (2007).

    Article  Google Scholar 

  27. L. D. Landau, Izv. Akad. Nauk SSSR 17, 51 (1953).

    Google Scholar 

  28. S. Z. Belenkij and L. D. Landau, Nuovo Cimento Suppl. 3, 15 (1956).

    Article  MATH  Google Scholar 

  29. F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).

    Article  ADS  Google Scholar 

  30. L. P. Csernai, Sov. Phys. JETP 65, 216 (1987).

    Google Scholar 

  31. A. Berera, M. Strikman, W. S. Toothacker, W. D. Walker, and J. J. Whitmore, Phys. Lett. B 403, 1 (1997).

    Article  ADS  Google Scholar 

  32. J. J. Ryan, Proceeding of annual meeting of the division of particles and fields of the APS (World Scientific, Singapore, 1993), p. 929.

    Google Scholar 

  33. T. B. Li, The mathematical processing of experiment (Science Press, Beijing, China, 1980), p. 42.

    Google Scholar 

  34. Z. J. Jiang and Y. F. Sun, J. Univ. Shanghai Sci Tech. 32, 253 (2010) (in Chinese).

    Google Scholar 

  35. C. Y. Wong, Introduction to high energy heavy ion collisions (Press of Harbin Technology University, Harbin, China, 2002), p. 23.

    Google Scholar 

  36. PHENIX Collaboration (S. S. Adler et al.), Phys. Rev. C 69, 034909 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijin Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Jiang, Z., Li, Q. et al. Hydrodynamic description for the pseudorapidity distributions of the charged particles produced in nucleus+nucleus collisions at high energy. Journal of the Korean Physical Society 64, 371–376 (2014). https://doi.org/10.3938/jkps.64.371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.371

Keywords

Navigation