Skip to main content
Log in

Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at \(\sqrt{s_{NN}} = 2.76\) TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing ET/Nch and it could be one of the possible parameters to explain the rise observed in ET/Nch from RHIC to LHC energies. Predictions are made for ET/Nch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV at the Large Hadron Collider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)

    Article  Google Scholar 

  2. B.B. Back et al., Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  3. STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  4. PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  5. G. Policastro, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 87, 081601 (2001)

    Article  ADS  Google Scholar 

  6. CMS Collaboration (V. Khachatryan et al.), Phys. Lett. B 765, 193 (2017)

    Article  ADS  Google Scholar 

  7. ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 109, 072301 (2012)

    Article  ADS  Google Scholar 

  8. J. Cleymans, R. Sahoo, D.P. Mahapatra, D.K. Srivastava, S. Wheaton, Phys. Lett. B 660, 172 (2008)

    Article  ADS  Google Scholar 

  9. R. Sahoo, A.N. Mishra, Int. J. Mod. Phys. E 23, 1450024 (2014)

    Article  ADS  Google Scholar 

  10. R. Sahoo, A.N. Mishra, N.K. Behera, B.K. Nandi, Adv. High Energy Phys. 2015, 612390 (2015) and references therein

    Article  Google Scholar 

  11. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  12. D. Prorok, Eur. Phys. J. A 24, 93 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Prorok, Eur. Phys. J. A 26, 277 (2005)

    Article  ADS  Google Scholar 

  14. D. Prorok, Phys. Rev. C 75, 014903 (2007)

    Article  ADS  Google Scholar 

  15. M. Mishra, C.P. Singh, Phys. Rev. C 78, 024910 (2008)

    Article  ADS  Google Scholar 

  16. S.K. Tiwari, C.P. Singh, Adv. High Energy Phys. 2013, 805413 (2013)

    Article  Google Scholar 

  17. S.K. Tiwari, C.P. Singh, J. Phys. Conf. Ser. 509, 012097 (2014)

    Article  Google Scholar 

  18. S.K. Tiwari, P.K. Srivastava, C.P. Singh, J. Phys. G 40, 045102 (2013)

    Article  ADS  Google Scholar 

  19. ALICE Collaboration (J. Adam et al.), Phys. Rev. C 94, 034903 (2016)

    Article  ADS  Google Scholar 

  20. STAR Collaboration (J. Adams et al.), Phys. Rev. C 70, 054907 (2004)

    Article  Google Scholar 

  21. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 71, 034908 (2005) 71

    Article  Google Scholar 

  22. F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)

    Article  ADS  Google Scholar 

  23. X. Yin, C.M. Ko, Y. Sun, L. Zhu, Phys. Rev. C 95, 054913 (2017)

    Article  ADS  Google Scholar 

  24. K. Yagi, T. Hatsuda, Y. Miake, Quark-gluon Plasma: From Big Bang to Little Bang, in Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., Vol. 23 (Cambridge University Press, 2005)

  25. D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001)

    Article  ADS  Google Scholar 

  26. S.K. Tiwari, P.K. Srivastava, C.P. Singh, Phys. Rev. C 85, 014908 (2012)

    Article  ADS  Google Scholar 

  27. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 96, 044904 (2017)

    Article  ADS  Google Scholar 

  28. STAR Collaboration (B.I. Abelev et al.), Phys. Lett. B 655, 104 (2007)

    Article  ADS  Google Scholar 

  29. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 97, 152301 (2006)

    Article  Google Scholar 

  30. ALICE Collaboration (B.B. Abelev et al.), Phys. Lett. B 736, 196 (2014)

    Article  ADS  Google Scholar 

  31. S. Chatterjee, S. Das, L. Kumar, D. Mishra, B. Mohanty, R. Sahoo, N. Sharma, Adv. High Energy Phys. 2015, 349013 (2015) and references therein

    Article  Google Scholar 

  32. CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. Lett. 109, 152303 (2012)

    Article  ADS  Google Scholar 

  33. K.J. Eskola, K. Kajantie, P.V. Ruuskanen, K. Tuominen, Nucl. Phys. B 570, 379 (2000)

    Article  ADS  Google Scholar 

  34. BRAHMS Collaboration (I. Arsene et al.), Phys. Rev. C 72, 014908 (2005)

    Article  Google Scholar 

  35. J. Cleymans, B. Kampfer, M. Kaneta, S. Wheaton, N. Xu, Phys. Rev. C 71, 054901 (2005)

    Article  ADS  Google Scholar 

  36. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)

    Article  ADS  Google Scholar 

  37. U.W. Heinz, G. Kestin, Eur. Phys. J. ST 155, 75 (2008)

    Article  Google Scholar 

  38. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 112301 (2004)

    Article  Google Scholar 

  39. J. Cleymans, K. Redlich, Phys. Rev. Lett. 81, 5284 (1998)

    Article  ADS  Google Scholar 

  40. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)

    Article  ADS  Google Scholar 

  41. P. Braun-Munzinger, J. Stachel, J. Phys. G 28, 1971 (2002)

    Article  ADS  Google Scholar 

  42. A. Tawfik, J. Phys. G 31, S1105 (2005)

    Article  ADS  Google Scholar 

  43. J. Cleymans, R. Sahoo, D.P. Mahapatra, D.K. Srivastava, S. Wheaton, J. Phys. G 35, 104147 (2008)

    Article  ADS  Google Scholar 

  44. A.N. Mishra, R. Sahoo, E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 74, 3147 (2014) 75

    Article  ADS  Google Scholar 

  45. E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 94, 011501 (2016)

    Article  ADS  Google Scholar 

  46. E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 93, 054046 (2016) 93

    Article  ADS  Google Scholar 

  47. ALICE Collaboration (E. Abbas et al.), Phys. Lett. B 726, 610 (2013)

    Article  ADS  Google Scholar 

  48. CMS Collaboration (S. Chatrchyan et al.), JHEP 08, 141 (2011)

    ADS  Google Scholar 

  49. ATLAS Collaboration (G. Aad et al.), Phys. Lett. B 710, 363 (2012)

    Article  ADS  Google Scholar 

  50. ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252301 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghunath Sahoo.

Additional information

Communicated by Xin-Nian Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar Tiwari, S., Sahoo, R. Transverse energy per charged particle in heavy-ion collisions: Role of collective flow. Eur. Phys. J. A 54, 39 (2018). https://doi.org/10.1140/epja/i2018-12475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12475-8

Navigation