Skip to main content
Log in

Exact solutions of the Bianchi types V and IX via time-dependent quasi-Maxwell equations

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The exact solutions of the Einstein field equations for the Bianchi types V and IX in presence of a perfect fluid via the time-dependent quasi-Maxwell (TQM) equations are investigated by using the threading formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, The Meaning of Relativity (Princeton University Press, Princeton, 1950).

    MATH  Google Scholar 

  2. H. Thirring, Phys. Z. 19, 33 (1918); ibid. 22, 29 (1921).

    MATH  Google Scholar 

  3. J. Lense and H. Thirring, Phys. Z. 19, 156 (1918).

    MATH  Google Scholar 

  4. B. Mashhoon, F. W. Hehl and D. S. Theiss, Gen. Relativ. Grav. 16, 711 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  5. http://www.homepage.villanova.edu/robert.jantzen/gem.

  6. O. Heaviside, The Electrician 31, 81 (1893).

    Google Scholar 

  7. O. Jefimenko, Causality, Electromagnetic Induction and Gravitation: A Different Approach to the Theory of Electromagnetic and Gravitational Fields (Electret Scientific, Star City, 2000).

    Google Scholar 

  8. A. Merloni, M. Vietri, L. Stella and D. Bini, Mon. Not. Roy. Astron. Soc. 304, 155 (1999).

    Article  ADS  Google Scholar 

  9. S. M. Morsink and L. Stella, Astrophys. J. 513, 827 (1999).

    Article  ADS  Google Scholar 

  10. L. Stella and M. Vietri, Nucl. Phys. Proc. Suppl. B 69, 135 (1999).

    Article  ADS  Google Scholar 

  11. I. Ciufolini, Phys. Rev. Lett. 56, 278 (1986).

    Article  ADS  Google Scholar 

  12. I. Ciufolini, Class. Quantum Grav. 17, 2369 (2000).

    Article  ADS  MATH  Google Scholar 

  13. I. Ciufolini and E. C. Pavlis, Nature (London) 431, 9580 (2004); L. Iorio, M. L. Ruggiero and C. Corda, Acta Astronautica 91, 141 (2013); L. Iorio, Adv. Space. Res. 48, 1403 (2011).

    Article  Google Scholar 

  14. Gravity Probe B, update at: http://einstein.stanford.edu.

  15. C. W. F. Everitt et al., Space. Sci. Rev. 148, 53 (2009).

    Article  ADS  Google Scholar 

  16. R. T. Jantzen, P. Carini and D. Bini, Ann. Phys. 215, 1 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  17. I. Ciufolini and J. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, 1995).

    MATH  Google Scholar 

  18. B. Mashhoon and N. O. Santos, Annalen Phys. 9, 49 (2000).

    Article  ADS  MATH  Google Scholar 

  19. D. Bini and R. T. Jantzen, A List of References on Spacetime Splitting and Gravitoelectromagnetism, Proceedings of the XXIII Spanish Relativity Meeting on Reference Frames and Gravitomagnetism, 199–224 (World Scientific, Singapore, 2001).

    Chapter  Google Scholar 

  20. M. L. Ruggiero and A. Tartaglia, Nuovo Cimento B 117, 743 (2002).

    ADS  Google Scholar 

  21. A. Barros, V. B. Bezerra and C. Romero, Mod. Phys. Lett. A 18, 2673 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  22. B. Mashhoon, Gravitoelectromagnetism: A Brief Review, arXiv: gr-qc/0311030v2, 2003.

    Google Scholar 

  23. S. Capozziello, M. De Laurentis, F. Garufi and L. Milano, Phys. Scripta 79, 025901 (2009).

    Article  ADS  Google Scholar 

  24. L. F. Costa and A. R. Herdeiro, Relativity in Fundamental Astronomy, Proceedings IAU Symposium, Vol. 5, p. 31 (Cambridge University Press, 2009).

    Google Scholar 

  25. C. Schmid, Phys. Rev. D 74, 044031 (2006); ibid. 79, 064007 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Ghose, arXiv: gr-qc/0905.2314v1, 2009.

  27. M. L. Ruggiero and L. Iorio, Gen. Relativ. Grav. 42, 2393 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. C. G. Tsagas, Phys. Rev. D 81, 043501 (2010).

    Article  ADS  Google Scholar 

  29. L. F. Costa, J. Natário and M. Zilhão, arXiv: grqc/1207.0470v1, 2012.

  30. H. Li, arXiv: hep-th/1012.4156v3, 2012.

  31. L. F. Costa and J. Natário, arXiv: gr-qc/1207.0465v2, 2012.

  32. B. Mashhoon, arXiv: gr-qc/0011014v1, 2000.

  33. J.-F. Pascual-Sánchez, Nuovo Cimento B 115, 725 (2000).

    ADS  Google Scholar 

  34. C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation (W. H. Freeman and Company, San Francisco, 1973).

    Google Scholar 

  35. L. D. Landau and E. M. Lifishitz, The Classical Theory of Fields (Pergamon Press, New York, 1975).

    Google Scholar 

  36. L. D. Landau and E. M. Lifishitz, Teoriya Polya (Nauka, Moscow, 1941).

    Google Scholar 

  37. A. Lichnerowicz, J. Math. Pure. Appl. 23, 37 (1944).

    MATH  MathSciNet  Google Scholar 

  38. A. Zel’manov, Soviet. Phys. Doklady. 1, 227 (1956); Chronometric Invariants (American Research Press, New Mexico, 2006).

    ADS  MATH  Google Scholar 

  39. R. Jantzen and P. Carini, ed. by G. Ferrarese, Bibliopolis, Naples, 185 (1991).

  40. M. Nouri-Zonoz, Class. Quantum Grav. 14, 3123 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. D. Lynden-Bell and M. Nouri-Zonoz, Rev. Mod. Phys. 70, 427 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. M. Nouri-Zonoz, Phys. Rev. D 60, 024013 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  43. M. Nouri-Zonoz and A. R. Tavanfar, Class. Quantum Grav. 18, 4293 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. J. Costa and J. Natário, J. Math. Phys. 46, 082501 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  45. J. Natário, Gen. Relativ. Grav. 39, 1477 (2007).

    Article  ADS  MATH  Google Scholar 

  46. M. Yavari, Int. J. Theor. Phys. 48, 3169 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  47. S. Boersma and T. Dray, Gen. Relativ. Grav. 27, 319 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. R. Beig and B. G. Schmidt, Lect. Notes Phys. 540, 325 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Yavari, Nuovo Cimento B 124, 197 (2009).

    ADS  MathSciNet  Google Scholar 

  50. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications Inc., New York, 1965).

    Google Scholar 

  51. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Seventh Edition, ed. by A. Jeffrey and D. Zwillinger (Academic Press, New York, 2007).

  52. A. Banerjee, S. B. Duttachoudhary and A. K. Sanyal, J. Math. Phys. 26, 3010 (1985).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. O. Heckmann and E. Schücking, World models in la structure et l’evolution de l’univers, page 149 (Editions Stoops, Brussels, 1958).

    Google Scholar 

  54. H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers and E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Yavari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, M. Exact solutions of the Bianchi types V and IX via time-dependent quasi-Maxwell equations. Journal of the Korean Physical Society 64, 346–354 (2014). https://doi.org/10.3938/jkps.64.346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.346

Keywords

Navigation