Skip to main content
Log in

Calculations of electron transport coefficients in Cl2-Ar, Cl2-Xe and Cl2-O2 mixtures

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In order to understand quantitatively plasma phenomena and ionized gases, accurate electron collision cross-sections and electron transport coefficients for not only pure atoms and molecules but also for the binary gas mixtures are necessary. Electron transport coefficients (electron drift velocity, density-normalized longitudinal diffusion coefficient, and density-normalized effective ionization coefficient) in mixture gases of Cl2 with Ar, Xe and O2, therefore, were calculated and analyzed by using a two-term approximation of the Boltzmann equation over a wide E/N range (ratio of the electric field E to the neutral number density N). The limiting field strength values of E/N, (E/N)lim, for these binary gas mixtures were also derived and compared with those of pure SF6 gas. These binary gas mixtures are being considered for use in many industries, depending on the mixture ratio and the particular application of the gas and the electrical equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Maller and M. S. Naidu, Advances in High Voltage Insulation and Arc Interruption in SF 6 and Vacuum (Wheaton & Co. Ltd., Exeter, Great Britain, 1981).

    Google Scholar 

  2. M. H. Luly and R. G. Richard, Gaseous Dielectrics with Low Global Warming Potentials (U.S. Patent. 0320428, 2010).

    Google Scholar 

  3. Conference of the Parties, Kyoto Protocol to the United Nations Framework Convention on Climate Change (Third Session Kyoto, Kyoto, Japan, 1997).

    Google Scholar 

  4. Conference of the Parties, Kyoto Protocol to the United Nations Framework Convention on Climate Change (Third Session Kyoto, Kyoto, Japan, 1997).

    Google Scholar 

  5. M. Taki, D. Maekawa, H. Odaka, H. Mizoguchi and S. Yanabu, IEEE Trans. Dielect. and Elec. Insulation 14, 341 (2007).

    Article  Google Scholar 

  6. H. Takagari, H. Kasuya, H. Mizoguchi and S. Yanabu, IEEE Trans. Dielect. and Elec. Insulation 15, 1424 (2008).

    Article  Google Scholar 

  7. H. Kasuya, Y. Kawamura, H. Mizoguchi, Y. Nakamura, S. Yanabu and N. Nagasaki, IEEE Trans. Dielect. and Elec. Insulation 17, 1196 (2010).

    Article  Google Scholar 

  8. L. G. Christophorou and R. J. Van Brunt, IEEE. Trans. Dielect. and Elec. Insulation 2, 952 (1995).

    Article  Google Scholar 

  9. L. J. Hernández-Ávila and J. de Urquijo, J. Phys. D: Appl. Phys. 39, 647 (2006)

    Article  ADS  Google Scholar 

  10. L. J. Hernández-Ávila, E. Basurto and J. de Urquijo, J. Phys. D: Appl. Phys. 35, 2264 (2002)

    Article  ADS  Google Scholar 

  11. J. de Urquijo, E. Basurto and L. J. Hernández-Ávila, J. Phys. D: Appl. Phys. 34, 2151 (2001)

    Article  ADS  Google Scholar 

  12. D. M. Xiao, L. H. Liu and Z. Y. Chen, J. Appl. Phys. 86, 6611 (1999).

    Article  ADS  Google Scholar 

  13. D. M. Xiao, L. L. Zhu and X. G. Li, J. Phys. D: Appl. Phys. 33, L145 (2000).

    Article  ADS  Google Scholar 

  14. Y. Qiu and D. M. Xiao, J. Phys. D: Appl. Phys. 27, 2663 (1994).

    Article  ADS  Google Scholar 

  15. J. de Urquijo, J. L. Hernández-Ávila, E. Basurto and F. Ramírez, J. Phys. D: Appl. Phys. 36, 1489 (2003).

    Article  ADS  Google Scholar 

  16. L. G. Christophorou, Nucl. Instr. Meth. Phys. Res. A 268, 424 (1998).

    Article  ADS  Google Scholar 

  17. M. Roberto, Proceedings of the 1998 ICPP & 25th EPS Conference on Plasma Physics and Controlled Fusion (Prague, Czech Republic, June 29–July 3); Europhysics Conference Abstracts 22C, 2698-1 (1998).

    Google Scholar 

  18. E. G. Thorsteinsson and J. T. Gudmundsson, Plasma Sources Sci. Technol. 19, 055008-1 (2010).

    ADS  Google Scholar 

  19. J. T. Gudmundsson, A. T. Hjartarson and E. G. Thorsteinsson, Vacuum 86, 808 (2012).

    Article  Google Scholar 

  20. A. M. Efremov, G. H. Kim, J. G. Kim, A. V. Bogomolov and C. I. Kim, Microelectron Eng. 84, 136 (2007).

    Article  Google Scholar 

  21. N. H. Malik and A. H. Qureshi, IEEE Trans. Elec. Insulation EI-15, 413 (1980).

    Article  Google Scholar 

  22. R. S. Taylor and K. E. Leopold, IEEE J. Quantum Electron. 31, 2195 (1995).

    Article  ADS  Google Scholar 

  23. Y. C. Lin, S. J. Chang, Y. K. Su, S. C. Shei and S. J. Hsu, Mat. Sci. Eng. B-Solid 98, 60 (2003).

    Article  Google Scholar 

  24. R. E. Robson, Aust. J. Phys. 37, 35 (1984).

    Article  ADS  Google Scholar 

  25. B. H. Jeon, J. Korean Phys. Soc. 43, 513 (2003).

    MathSciNet  Google Scholar 

  26. B. H. Jeon, J. Korean Phys. Soc. 49, 2321 (2006).

    Google Scholar 

  27. M. Kimura and Y. Nakamura, J. Phys. D: Appl. Phys. 43, 145202-1 (2010).

    Article  ADS  Google Scholar 

  28. Y. Nakamura, J. Phys. D: Appl. Phys. 43, 365201-1 (2010).

    Article  Google Scholar 

  29. D. A. Tuan and B. H. Jeon, J. Phys. Soc. Jpn. 80, 084301-1 (2011).

    ADS  Google Scholar 

  30. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (New York: John Wiley & Sons, New York, 1974), Chaps. 6 and 13.

    Google Scholar 

  31. L. G. Christophorou and S. R. Hunter, Electron-Molecule Interations and Their Applications, vol 2, edited by L. G. Christophorou (Academic Press, Florida, 1984), pp. 318–412.

    ADS  Google Scholar 

  32. Y. Nakamura and M. Kurachi, J. Phys. D: Appl. Phys. 21, 718 (1988).

    Article  ADS  Google Scholar 

  33. T. Hashimoto and Y. Nakamura, Papers of Gas Discharge Technical Committee, ED-90-61 (IEE Japan) (1990). As quoted in M. Suzuki, T. Taniguchi, N. Yoshimura and H. Tagashira H. J. Phys. D: Appl. Phys. 25, 50 (1992)

    Google Scholar 

  34. V. A. Bailey and R. H. Healey, Philos. Mag. 19, 725 (1935).

    Google Scholar 

  35. S. E. Božin and C. C. Goodyear, Br. J. Appl. Phys. 18, 49 (1967).

    Article  ADS  Google Scholar 

  36. J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).

    Article  ADS  Google Scholar 

  37. A. A. Kruithof, Physica 7, 519 (1940) as quoted in Ref. 35.

    Article  ADS  Google Scholar 

  38. M. Yousfi, J. de Urquijo, A. Juárez, E. Basurto and J. L. Hernández-Ávila, IEEE Trans. Plasma Sci. 37, 764 (2009).

    Article  ADS  Google Scholar 

  39. H. Tagashira, Y. Sakai and S. Sakamoto, J. Phys. D: Appl. Phys. 10, 1051 (1977).

    Article  ADS  Google Scholar 

  40. D. A. Tuan and B. H. Jeon, J. Phys. Soc. Jpn. 81, 064301-1 (2012).

    ADS  Google Scholar 

  41. R. V. Chiflikian, Phys. Plasmas 2, 3902 (1995).

    Article  ADS  Google Scholar 

  42. T. Aschwanden, Die Ermittlung physikalischer entladungsparameter in isoliergasen und isoliergasgemischen mit einer verbesserten swarm-methode, PhD dissertation (Eidgenössische Technische Hochschule Zürich, Zurich, 1985). From Ref. 26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Anh Tuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuan, D.A. Calculations of electron transport coefficients in Cl2-Ar, Cl2-Xe and Cl2-O2 mixtures. Journal of the Korean Physical Society 64, 23–29 (2014). https://doi.org/10.3938/jkps.64.23

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.23

Keywords

Navigation