Skip to main content
Log in

Development of a beam stop array system with dual scan mode for scatter correction of cone-beam CT

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A beam stop array (BSA) is widely used to estimate the scatter distribution of cone-beam computed tomography (CT) experimentally. A rectangular BSA, which is the most generally used, produces a penumbra region at the edge of the grid on the projection image. The penumbra region can be the cause of an inaccurate scatter estimate and loss of image data. In this study, two types of BSAs have been designed and developed, a linear BSA (l-BSA), which is a simple rectangular type, and a curved BSA (c-BSA) to avoid the penumbra effect. A Monte Carlo simulation was performed to determine the thickness and the material of beam stop arrays. The particle tracking technique of MCNP5 code was used to analyze the accuracy of the scatter distribution acquired by the beam stop arrays. The improvement in the image quality was analyzed by using an in-house phantom, a simple type CT phantom, and a humanoid phantom. How the curved beam stop array improved the penumbra effect was also analyzed in a large field of view. The additional dose caused by a dual scan was analyzed by using a Monte Carlo simulation and experiment. The accuracies of the scatter estimates were 83.4% for the c-BSA and 90.4% for the l-BSA. The c-BSA compensated the penumbra effect effectively while the l-BSA had a severe penumbra region in the partial projection image in a large field of view. Contrasts were improved by 24.8 (air-PMMA), 55.8 (Teflon-PMMA), and 81.7% (water-PMMA) for the c-BSA and 11.1 (air-PMMA), 44.1 (Teflon-PMMA), and 82.2% (water-PMMA) for the l-BSA by scatter correction. After noise suppression, the contrast-to-noise ratios were improved by 2.7–4.1 times for the c-BSA and 3.5–5.3 times for the l-BSA. Uniformities were also improved by up to 10 times for the c-BSA and 12 times for the l-BSA. The quality of the humanoid phantom image was also improved after the scatter correction. Consequently, the c-BSA can improve the image quality of cone-beam CT and compensate for the penumbra effect without an additional dose of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kida, Y. Masutani and H. Yamashita, Rad. Phys Technol 5, 138 (2012).

    Article  Google Scholar 

  2. S. Yoo and F. Yin, Int. J. Rad. Onc. Biol. Phys. 66, 1553 (2006).

    Article  Google Scholar 

  3. L. Zhu, N. R. Bennett and R. Fahrig, IEEE 25, 1573 (2006).

    Google Scholar 

  4. Y. Chen, B. Liu, J. M. O’connor, C. S. Didier and S. J. Glick, Med. Phys. 36, 857 (2009).

    Article  Google Scholar 

  5. G. Poludniowski, P. M. Evans, V. N. Hansen and S. Webb, Phys. Med. Biol. 54, 3847 (2009).

    Article  Google Scholar 

  6. A. P. Colijn and F. J. Beekman, IEEE 23, 584 (2004).

    Google Scholar 

  7. W. Zbijewski and F. J. Beekman, IEEE 25, 817 (2006).

    Google Scholar 

  8. Y. Kyriakou, T. Riedel, and W. A. Kalender, Phys. Med. Biol. 51, 4567 (2006).

    Article  Google Scholar 

  9. M. R. Ay and H. Z., Phys. Med. Biol. 50, 4863 (2005).

    Article  Google Scholar 

  10. W. Yao and K. W. Leszczynski, Med. Phys. 36, 3145 (2009).

    Article  Google Scholar 

  11. C. Bai, G. L. Zeng and G. T. Gullberg, Phys. Med. Biol. 45, 1275 (2000).

    Article  Google Scholar 

  12. S. W. Smith and R. A. Kruger, Med. Phys. 13, 831 (1986).

    Article  Google Scholar 

  13. J. M. Boone and J. A. Seibert, Med. Phys. 15, 713 (1988).

    Article  Google Scholar 

  14. J. M. Boone and J. A. Seibert, Med. Phys. 15, 721 (1988).

    Article  Google Scholar 

  15. D. G. Kruger, F. Zink, W. W. Peppler, D. L. Ergun and C. A. Mistretta, Med. Phys. 21, 175 (1994).

    Article  Google Scholar 

  16. M. Meyer, W. A. Kalender and Y. Kyriakou, Phys. Med. Biol. 55, 99 (2010).

    Article  Google Scholar 

  17. R. L. Dixon and J. M. Boone, Med. Phys. 38, 4251 (2011).

    Article  Google Scholar 

  18. J. A. Seibert and J. M. Boone, Med. Phys. 15, 567 (1988).

    Article  Google Scholar 

  19. H. Li, R. Mohan and X. Zhu, Phys. Med. Biol. 53, 6729 (2008).

    Article  Google Scholar 

  20. M. Sun and J. M. Star-Lack, Phys. Med. Biol. 55, 6695 (2010).

    Article  Google Scholar 

  21. H. Gao, R. Fahrig, N. R. Bennett, M. Sun, J. Star-Lack and L. Zhu, Med. Phys. 37, 934 (2010).

    Article  Google Scholar 

  22. H. Gao, L. Zhu and R. Fahrig, Med. Phys. 37, 4029 (2010).

    Article  Google Scholar 

  23. L. Zhu, N. R. Bennett and R. Fahrig, IEEE 25, 1573 (2006).

    Google Scholar 

  24. L. Zhu, J. Starman, N. R. Bennett and R. Fahrig, IEEE 3, 1964 (2006).

    Google Scholar 

  25. J. P. Stonestrom and A. Macovski, IEEE NS-23, 1453 (1976).

    Google Scholar 

  26. H. Yan, X. Mou, S. Tang, Q. Xu and M. Zankl, Phys. Med. Biol. 55, 6353 (2010).

    Article  Google Scholar 

  27. R. Ning and X. Tang, Med. Phys. 31, 1195 (2004).

    Article  Google Scholar 

  28. H. Lee, L. Xing, R. Lee and B. P. Fahimian, Med. Phys. 39, 2386 (2012).

    Article  Google Scholar 

  29. H. Yan, X. Mou, S. Tang and X. Chen, SPIE 7258 (2009).

  30. T. Niu and L. Zhu, Med. Phys. 38, 6027 (2011).

    Article  Google Scholar 

  31. J. Jin, L. Ren, Q. Liu, J. Kim, N. Wen, H. Guan, B. Movsas and I. J. Chetty, Med. Phys. 37, 5634 (2010).

    Article  Google Scholar 

  32. L. Zhu, Y. Xie, J. Wang and L. Xing, Med. Phys. 36, 2258 (2009).

    Article  Google Scholar 

  33. E. Ruhrnschopf and K. Kingenbeck, Med. Phys. 38, 4296 (2011).

    Article  Google Scholar 

  34. T. Niu and L. Zhu, Med. Phys. 38, 6027 (2011).

    Article  Google Scholar 

  35. L. Zhu, Y. Xie, J. Wang and L. Xing, Med. Phys. 36, 2258 (2009).

    Article  Google Scholar 

  36. D. J. Huntley, D. I. Godfrey-Smith and M. L. Thewalt, Nature (London) 313, 105 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Hyun Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.H., Choi, J., Lee, K.C. et al. Development of a beam stop array system with dual scan mode for scatter correction of cone-beam CT. Journal of the Korean Physical Society 64, 1220–1229 (2014). https://doi.org/10.3938/jkps.64.1220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1220

Keywords

Navigation