Skip to main content
Log in

In-treatment 4D cone-beam CT with image-based respiratory phase recognition

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The use of respiration-correlated cone-beam computed tomography (4D-CBCT) appears to be crucial for implementing precise radiation therapy of lung cancer patients. The reconstruction of 4D-CBCT images requires a respiratory phase. In this paper, we propose a novel method based on an image-based phase recognition technique using normalized cross correlation (NCC). We constructed the respiratory phase by searching for a region in an adjacent projection that achieves the maximum correlation with a region in a reference projection along the cranio-caudal direction. The data on 12 lung cancer patients acquired just prior to treatment and on 3 lung cancer patients acquired during volumetric modulated arc therapy treatment were analyzed in the search for the effective area of cone-beam projection images for performing NCC with 12 combinations of registration area and segment size. The evaluation was done by a “recognition rate” defined as the ratio of the number of peak inhales detected with our method to that detected by eye (manual tracking). The average recognition rate of peak inhale with the most efficient area in the present method was 96.4%. The present method was feasible even when the diaphragm was outside the field of view. With the most efficient area, we reconstructed in-treatment 4D-CBCT by dividing the breathing signal into four phase bins; peak exhale, peak inhale, and two intermediate phases. With in-treatment 4D-CBCT images, it was possible to identify the tumor position and the tumor size in moments of inspiration and expiration, in contrast to in-treatment CBCT reconstructed with all projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yan D, Vicini F, Wong J, Martinez A. Adaptive radiation therapy. Phys Med Biol. 1997;42:123–32.

    Article  PubMed  CAS  Google Scholar 

  2. Yang Y, Schreibmann E, Li T, Wang C, Xing L. Evaluation of on-board kV cone-beam CT (CBCT)-based dose calculation. Phys Med Biol. 2007;52:685–705.

    Article  PubMed  Google Scholar 

  3. van Zijtveld M, Dirkx M, Heijmen B. Correction of conebeam CT values using a planning CT for derivation of the “dose of the day”. Radiother Oncol. 2007;85:195–200.

    Article  PubMed  Google Scholar 

  4. Richter A, Hu Q, Steglich D, Baier K, Wilbert J, Guckenberger M, et al. Investigation of the usability of cone beam CT data sets for dose calculation. Radiat. Oncol. 2008;3:42.

    Article  PubMed  Google Scholar 

  5. Guan H, Dong H. Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy. Phys Med Biol. 2009;54:6239–50.

    Article  PubMed  Google Scholar 

  6. Nakagawa K, Haga A, Shiraishi K, Yamashita H, Igaki H, Terahara A, et al. First clinical cone-beam CT imaging during volumetric modulated arc therapy. Radiother Oncol. 2009;90:422–3.

    Article  PubMed  Google Scholar 

  7. Nakagawa K, Shiraishi K, Kida S, Haga A, Yamamoto K, Saegusa S, et al. First report on prostate displacements immediately before and after treatment relative to the position during VMAT delivery. Acta Oncol. 2009;48:1206–8.

    Article  PubMed  Google Scholar 

  8. Dietrich L, Jetter S, Tucking T, Nill S, Oelfke U. Linac-integrated 4D cone beam CT: first experimental results. Phys Med Biol. 2006;51:2939–52.

    Article  PubMed  Google Scholar 

  9. Lu J, Guerrero TM, Munro P, Jeung A, Chi PC, Balter P, et al. Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling. Med Phys. 2007;34:3520–9.

    Article  PubMed  Google Scholar 

  10. Leng S, Zambelli J, Tolakanahalli R, Nett B, Munro P, Star-Lack J, et al. Streaking artifacts reduction in four-dimensional cone-beam computed tomography. Med Phys. 2008;35:4649–59.

    Article  PubMed  Google Scholar 

  11. Li T, Xing L, Munro P, McGuinness C, Chao M, Yang Y, et al. Four-dimensional cone-beam computed tomography using an on-board imager. Med Phys. 2006;33:3825–33.

    Article  PubMed  Google Scholar 

  12. Li T, Xing L. Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2007;67:1211–9.

    Article  PubMed  Google Scholar 

  13. Sonke –JJ, Zijp L, Remeijer P, van Herk M. Respiratory correlated cone beam CT. Med Phys. 2005;32:1176–86.

    Article  PubMed  Google Scholar 

  14. Kavanagh A, Evans MP, Hansen NV, Webb S. Obtaining breathing patterns from any sequential thoracic X-ray image set. Phys Med Biol. 2009;54:4879–88.

    Article  PubMed  Google Scholar 

  15. Hajnal VJ, Hawkes JD, Derek L, Hill G. Medical image registration. New York: CRC Press; 2001.

    Book  Google Scholar 

  16. Kida S, Saotome N, Masutani Y, Yamashita H, Ohtomo K, Nakagawa K, et al. 4D-CBCT reconstruction using MV portal imaging during volumetric modulated arc therapy. Radiother Oncol. 2011;100:380–5.

    Article  PubMed  Google Scholar 

  17. Takahashi S. Conformation radiotherapy: rotation techniques as applied to radiography and radiotherapy of cancer. Acta Radiol Suppl. 1965;242:1–142.

    Google Scholar 

  18. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008;35:310–7.

    Article  PubMed  Google Scholar 

  19. Feldkamp AL, Davis CL, Kress WJ. Practical cone-beam algorithm. J Opt Soc Am. 1984;A16:612–9.

    Article  Google Scholar 

  20. Webb S. A modified convolution reconstruction technique for divergent beams. Phys Med Biol. 1982;27:419–23.

    Article  PubMed  CAS  Google Scholar 

  21. Jaffray AD, Siewerdsen HJ, Wong WJ, Martinez AA. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53:1337–49.

    Article  PubMed  Google Scholar 

  22. Hugo DG, Liang J, Yan D. Marker-free lung tumor trajectory estimation from a cone beam CT sinogram. Phys Med Biol. 2010;55:2637–50.

    Article  PubMed  Google Scholar 

  23. Downes P, Jarvis R, Radu E, Kawrakow I, Spezi E. Monte Carlo simulation and patient dosimetry for a kilovoltage cone-beam CT unit. Med Phys. 2009;36:4156–67.

    Article  PubMed  CAS  Google Scholar 

  24. Maurer J, Godfrey D, Wang Z, Yin FF. On-board four-dimensional digital tomosynthesis: First experimental results. Med Phys. 2008;35:3574–83.

    Article  PubMed  Google Scholar 

  25. Maurer J, Pan T, Yin FF. Slow gantry rotation acquisition technique for on-board four-dimensional digital tomosynthesis. Med Phys. 2010;37:921–33.

    Article  PubMed  Google Scholar 

  26. Bergner F, Berkus T, Oelhafen M, Kunz P, Pan T, Kachelrieß M. Autoadaptive phase-correlated (AAPC) reconstruction for 4D CBCT. Med Phys. 2009;36:5695–706.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI 22791176. S. K., T. M., and A. H. wish to thank Dr. Kouichi Ogawa for his advice regarding the reconstruction algorithm. S. K. and A. H. wish to thank Dr. Di Yan for fruitful discussions on clinical usage of in-treatment 4D-CBCT. K. N. receives research funding from Elekta K.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Haga.

About this article

Cite this article

Kida, S., Masutani, Y., Yamashita, H. et al. In-treatment 4D cone-beam CT with image-based respiratory phase recognition. Radiol Phys Technol 5, 138–147 (2012). https://doi.org/10.1007/s12194-012-0146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-012-0146-5

Keywords:

Navigation