Skip to main content
Log in

Vertical growth of ZnO nanorods on ITO substrate by using a two-step-potential electrochemical deposition method

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, we grew vertical ZnO nanorods on indium-doped tin-oxide (ITO) substrate by using an electrochemical deposition. For the growth, we used a two-step, continuous potential process without a template, additives, catalysts or a seed buffer layer. The morphological, structural and optical properties of ZnO were investigated using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoluminescence (PL), respectively. The best test conditions resulted in the growth of vertical ZnO nanorods with a height of 550 nm and occurred when a first-step potential of −1.2 V was applied for 10 s, and a second-step potential of −0.7 V was applied for 1190 s. ZnO nanorods grown at the optimized growth condition show the strongest (002) peak intensity in the XRD spectrum and the highest near band edge emission over deep level edge emission (NBE/DLE) peak ratio of 76.26 and the lowest full width at half maximum (FWHM) of 144 meV in the photoluminescence spectrum. In our study, the structural and the optical properties of ZnO nanorods were highly improved, as compared with a constant single potential for 1200 s, when a first-step potential of −1.2 V was applied for 10 s and was followed by a second-step potential of −0.7 V which was applied for 1190 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Djurisic and Y. H. Leung, Small 2,944 (2006).

    Article  Google Scholar 

  2. D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).

    Article  Google Scholar 

  3. N. Athavan, C. W. Robert, M. Jan and K. Rolf, Nano Lett. 8, 534 (2008).

    Article  Google Scholar 

  4. S. Y. Pung, K. L. Choy, X. Hou and C. Shan, Nanotechnology 19, 435609 (2008).

    Article  ADS  Google Scholar 

  5. X. M. Fan, J. S. Lian, Z. X. Guo and H. J. Lu, Appl. Surf. Sci. 239, 176 (2005).

    Article  ADS  Google Scholar 

  6. D. C. Oh, T. Suzuki, J. J. Kim, H. Makino, T. Hanada, M. W. Cho and T. Yao, Appl. Phys. Lett. 86, 032909 (2005).

    Article  ADS  Google Scholar 

  7. S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanetoglu and Y. Lu, Nanotechnology 2, 50 (2003).

    Google Scholar 

  8. R. Hong, J. Huang, H. He, Z. Fan and J. Shao, Appl. Surf. Sci. 242, 346 (2005).

    Article  ADS  Google Scholar 

  9. M. Smirnov, C. Baban and G. I. Rusu, Appl. Surf. Sci. 256, 2405 (2010).

    Article  ADS  Google Scholar 

  10. X. Q. Zhao, C. R. Kim, J. Y. Lee, C. M. Shin, J. H. Heo, J. Y. Leem, H. Ryu, J. H. Chang, H. C. Lee, C. S. Son, B. C. Shin, W. J. Lee, W. G. Jung, S. T. Tan, J. L. Zhao and X. W. Sun, Appl. Surf. Sci. 255, 5861 (2009).

    Article  ADS  Google Scholar 

  11. Y. F. Gao, M. Nagai, Y. Masuda, F. Sato and K. Koumoto, J. Cryst. Growth 286, 445 (2006).

    Article  ADS  Google Scholar 

  12. Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey and H. Zhang, Small 6, 307 (2010).

    Article  Google Scholar 

  13. E. Jamil, M. Johann, P. Laetitia, M. Y. Lin, C. Christophe, L. Gilles and L. C. Claude, J. Elect. Mater. 40, 728 (2011).

    Article  Google Scholar 

  14. H. Kou, X. Zhang, Y. Du, W. Ye, S. Lin and C. Wang, Appl. Surf. Sci. 257, 4643 (2011).

    Article  ADS  Google Scholar 

  15. Q. F. Han, Y. I. Jeong, J. H. Heo, C. M. Shin, H. Ryu, M. S. Park, W. J. Lee, J. H. Yoon, J. E. Yang and H. Choi, J. Nanosci. Nanotechnol. 12, 3677 (2012).

    Article  Google Scholar 

  16. Y. Hoshi and T. Kiyomura, Thin Solid Films 411, 36 (2002).

    Article  ADS  Google Scholar 

  17. O. Lupana, V. M. Guerina, I. M. Tiginyanub, V. V. Ursakib, L. Chowc, H. Heinrichc and T. Pauportea, J. Photochem. Photobiol. A: Chem. 211, 65 (2010).

    Article  Google Scholar 

  18. M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim and S. W. Kim, Adv. Mater. 21, 2185 (2009).

    Article  Google Scholar 

  19. D. H. Choi, M. Y. Choi, H. J. Shin, S. M. Yoon, J. S. Seo, J. Y. Choi, S. Y. Lee, J. M. Kim and S. W. Kim, J. Phys. Chem. C 114, 1379 (2010).

    Article  Google Scholar 

  20. H. K. Park, S. P. Hong and Y. R. Do, J. Electrochem. Soc. 159, D355 (2012).

    Article  Google Scholar 

  21. Z. Liu, L. E, J. Ya and Y. Xin, Appl. Surf. Sci. 255, 6415 (2009).

    Article  ADS  Google Scholar 

  22. C. T. Hsieh, S. Y. Yang, J. L. Gu and Y. R. Jiang, Solid State Ionics 209–210, 43 (2012).

    Article  Google Scholar 

  23. L. Wang, G. C. Liu, L. J. Zou and D. F. Xue, Appl. Surf. Sci. 257, 5519 (2011).

    Article  ADS  Google Scholar 

  24. S. J. Lee, S. K. Park, C. R. Park, J. Y. Lee, J. H. Park and Y. R. Do, J. Phys. Chem. C 111, 11793 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyukhyun Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.G., Jang, JT., Ryu, H. et al. Vertical growth of ZnO nanorods on ITO substrate by using a two-step-potential electrochemical deposition method. Journal of the Korean Physical Society 63, 78–82 (2013). https://doi.org/10.3938/jkps.63.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.78

Keywords

Navigation