Skip to main content
Log in

One and two-individual movements of fish after chemical exposure

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Movement behavior of an indicator species, zebrafish (Danio rerio), was analyzed with one- and two-individual groups before and after treatment with a toxic chemical, formaldehyde, at a low concentration (1 ppm). After the boundary area had been determined based on experimental data, intermittency was defined as the probability distributions of the shadowing time during which data were above a pre-determined threshold and were obtained from experimental time-series data on the forces and the inter-distances for one and two individuals. Overall intermittencies were similar in the boundary and central areas. However, the intermittencies were remarkably different between the one- and the two-individual groups: the single line was used to fit the data for the one-individual group whereas two phases were observed with breakpoints (approximately 10 seconds in logarithm) in the exponential fitting curves for the two-individual group. A difference in the probability distributions of the shadowing time was observed“before” and “after” treatment for different areas. Intermittency patterns before and after treatment were contrasted in the center for the one-individual group whereas the difference was observed in the boundary for two-individual group. The intermittencies for the inter-distances of two individuals in the boundary and the central areas were markedly different before and after treatment. When the differences between the intermittencies in the boundary and the central areas and between “before” and “after” treatment are considered, the distribution patterns of the shadowing time (scaling behaviors or intermittency patterns) should be a useful means of bio-monitoring to detect contaminants in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Lemly and R. J. F. Smith, Ecotox. and Environ. Safe. 11, 211 (1986).

    Google Scholar 

  2. H. Dutta, J. Marcelino and C. Richmonds, Arch. Int. Phys. 100, 331 (1992).

    Article  Google Scholar 

  3. T. S. Chon, N. Chung, I. S. Kwak, J. S. Kim, S. C. Koh, S. K. Lee, J. B. Leem and E. Y. Cha, Environ. Monit. Assess. 101, 2 (2005).

    Google Scholar 

  4. J. A. Macedo-Sousa, J. L. T. Pestana, A. Gerhardt, A. J. A. Nogueira and A. M. V. M. Soares, Chemosphere 67, 1665 (2007).

    Article  Google Scholar 

  5. A. Gerhardt, Biomonitoring of polluted water: reviews on actual topics (Trans Tech Publications, Uetikon-Zuerich, 1999).

    Google Scholar 

  6. I. S. Kwak, T. S. Chon, H. M. Kang, N. I. Chung, J. S. Kim, S. C. Koh, S. K. Lee and Y. S. Kim, Environ. Pollut. 120, 672 (2002).

    Google Scholar 

  7. Y. S. Park, N. I. Chung, K. H. Choi, E. Y. Cha, S. K. Lee and T. S. Chon, Aquat. Toxicol. 71, 217 (2005).

    Article  Google Scholar 

  8. B. J. Lawrence and R. J. F. Smith, J. Chem. Ecol. 15, 210 (1989).

    Article  Google Scholar 

  9. C. W. Ji, S. H. Lee, K. H. Choi, I. S. Kwak, S. G. Lee, E. Y. Cha, S. K. Lee and T. S. Chon, Int. J. Ecodyn. 2, 28 (2007).

    Article  Google Scholar 

  10. Y. Liu, T. S. Chon, H. K. Baek, Y. H. Do, J. H. Choi and Y. D. Chung, Mod. Phys. Lett. B 25, 1135 (2011a).

    ADS  Google Scholar 

  11. Y. Li, J. M. Lee, T. S. Chon, Y. Liu, H. Kim, M. J. Bae and Y. S. Park, Mod. Phys. Lett. B 27, 135 (2013).

    Google Scholar 

  12. P. C. Tobin and O. N. Bjørnstad, J. Ani. Ecol. 72, 461 (2003).

    Google Scholar 

  13. S. Dray, M. Royer-Carenzi and C. Calenge, Ecol. Res. 25, 675 (2010).

    Article  Google Scholar 

  14. T. S. Chon, Y. S. Park, K. Y. Park, S. Y. Choi, K. T. Kim and E. C. Cho, Appl. Entomol. and Zool. 39, 79 (2004).

    Article  Google Scholar 

  15. C. K. Kim, I. S. Kwak, E. Y. Cha and T. S. Chon, Ecol. Model. 195, 62 (2006).

    Article  Google Scholar 

  16. Y. Liu, S. H. Lee and T. S. Chon, Ecol. Model. 222, 2192 (2011b).

    Google Scholar 

  17. T. V. Nguyen, Y. Liu, I. H. Jung, T. S. Chon and S. H. Lee, Mod. Phys. Lett. B 25, 1144 (2011).

    Article  ADS  Google Scholar 

  18. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Phys. Rev. Lett. 75, 1227 (1995).

    Article  ADS  Google Scholar 

  19. S. V. Viscido, M. Miller and D. S. Wethey, J. Theor. Biol. 208, 315 (2001).

    Article  Google Scholar 

  20. J. K. Parrish, S. V. Viscido and D. Grünbaum, Biol. Bull. 202, 296 (2002).

    Article  Google Scholar 

  21. S. H. Lee, H. K. Pak and T. S. Chon, J. Theor. Biol. 240, 250 (2006).

    Article  MathSciNet  Google Scholar 

  22. A. S. Kane, J. D. Salierno, G. T. Gipson, T. C. A. Molteno and C. Hunter, Water Res. 38, 3993 (2004).

    Article  Google Scholar 

  23. S. Y. Ha, S. Jung and M. Slemrod, J. Differ. Equations 252, 2563 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. N. S. Matuda, Bull. of the Jpn. Soc. Sci. Fisher. 46, 689 (1980).

    Article  Google Scholar 

  25. S. H. Lee, J. of Asia-Pac. Entomol. 16, 12 (2013).

    Google Scholar 

  26. K. N. Tsutomu, T. Takagi, K. Yamamoto and T. Hiraishi, Nippon Suisan Gakkaishi 59, 1280 (1993).

    Google Scholar 

  27. K. Suzuki, T. Takagi and T. Hiraishi, Fish. Res. 60, 4 (2003).

    Article  Google Scholar 

  28. J. E. Hirsch, B. A. Huberman and D. J. Scalapino, Phys. Rev. A 25, 519 (1982).

    Article  ADS  Google Scholar 

  29. W. C. B. David, K. Sauer and R. J. Otis, J. Environ. Eng. Div. 102, 790 (1976).

    Google Scholar 

  30. Y. Do, Y. C. Lai and Z. Liu, E. J. Kostelich, Phys. Rev. E 67, 202 (2003).

    Article  Google Scholar 

  31. Y. Do and Y. C. Lai, Europhys. Lett. 67, 915 (2004).

    Article  ADS  Google Scholar 

  32. P. Manneville and Y. Pomeau, Phys. Lett. A 75, 1 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  33. N. F. S. Lawrence, Biophys. J. 8, 252 (1968).

    Article  Google Scholar 

  34. P. Gawthrop, I. Loram, M. Lakie and H. Gollee, Biol. Cybern. 104, 32 (2011).

    Article  MathSciNet  Google Scholar 

  35. Y. Pomeau, J. C. Roux, A. Rossi, S. Bachelart and C. Vidal, J. Physique Lett. 42, 272 (1981).

    Google Scholar 

  36. I. M. De la Fuente, L. Martinez and J. Veguillas, Biosystems 39, 88 (1996).

    Google Scholar 

  37. G. J. de Valcárcel, E. Roldán, V. Espinosa and R. Vilaseca, Phys. Lett. A 206, 360 (1995).

    Article  Google Scholar 

  38. Y. Pomeau and P. Manneville, Commun. in Math. Phys. 74, 190 (1980).

    MathSciNet  ADS  Google Scholar 

  39. T. Datry, D. Arscott and S. Sabater, Aquat. Sci. 73, 454 (2011).

    Google Scholar 

  40. M. T. Bogan, K. S. Boersma and D. A. Lytle, Freshwater Biol. 10, 1111 (2013).

    Google Scholar 

  41. A. Harnos, G. Horváth, A. B. Lawrence and G. Vattay, Physica A 286, 312 (2000).

    Article  ADS  MATH  Google Scholar 

  42. A. Mashanova, T. H. Oliver and V. A. A. Jansen, J. R. Soc. Interface 7, 199 (2010).

    Article  Google Scholar 

  43. R. Jeanson, S. Blanco, R. Fournier, J. L. Deneubourg, V. Fourcassié and G. Theraulaz, J. Theor. Biol. 225, 443 (2003).

    Article  Google Scholar 

  44. M. Martin, F. Bastardie, D. Richard, F. Burel and C. R. Acad. Bulg. Sci. 324, 1029 (2001).

    Google Scholar 

  45. J. R. Fetcho and K. S. Liu, Ann. NY Acad. Sci. 860, 334 (1998).

    Article  ADS  Google Scholar 

  46. G. R. Blaser and R. Behav, Res. Methods 38, 456 (2006).

    Article  Google Scholar 

  47. E. Levin, Z. Bencan and D. Cerutti, Physiol. and Behav. 90, 55 (2007).

    Article  Google Scholar 

  48. S. Kato and J. Neurosci. Methods 134, 2 (2004).

    Google Scholar 

  49. H. A. Swain, C. Sigstad and F. M. Scalzo, Neurotoxicol. and Teratol. 26, 726 (2004).

    Google Scholar 

  50. R. Gerlai, V. Lee and R. Blaser, Pharmacol. Biochem. Behav. 85, 753 (2006).

    Article  Google Scholar 

  51. N. Miller and R. Gerlai, Behav. Brain Res. 184, 157 (2007).

    Article  Google Scholar 

  52. N. Noordiana and Y. C. B. Farhana, Int. Food Res. J. 18, 125 (2011).

    Google Scholar 

  53. C. Xia, Y. Li, T. S. Chon and J. M. Lee, Indust. Elec. ISIE, 909 (2009).

    Google Scholar 

  54. J. E. Herbert-Read, A. Perna, R. P. Mann, T. M. Schaerf, D. J. T. Sumpter and A. J. W. Ward, P. Natl. A. Sci. 108, 18726 (2011).

    Article  ADS  Google Scholar 

  55. R. D. Collins, R. N. Gargesh, A. D. Maltby, R. J. Roggero, M. K. Tourtellot and W. J. Bell, Physiol. Entomol. 19, 166 (1994).

    Article  Google Scholar 

  56. J. H. Zar, Biostatistical analysis (Prentice hall, Upper Saddle River, New Jersey, 1999).

    Google Scholar 

  57. Y. Katz, K. Tunström, C. C. Ioannou, C. Huepe and I. D. Couzin, P. Natl. A. Sci. 108, 18720 (2011).

    Article  ADS  Google Scholar 

  58. I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N. R. Franks, J. Theor. Biol. 218, 2 (2002).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Soo Chon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quach, Q.K., Chon, TS., Kim, H. et al. One and two-individual movements of fish after chemical exposure. Journal of the Korean Physical Society 63, 18–27 (2013). https://doi.org/10.3938/jkps.63.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.18

Keywords

Navigation