Skip to main content
Log in

Fabrication of pure and Ag-doped TiO2 nanorods and study of the lattice strain and the activation energy of the crystalline phases

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

TiO2 nanorods can be used as dye-sensitized solar cells and as various sensors and photocatalysts. These nanorods are synthesized by using a thermal corrosion process in a NaOH solution at 200 °C with TiO2 powder as a source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti8O15 phases and the synthesis of TiO2 nanorods by using the sol-gel method and alkaline corrosion to incorporate silver and silver-oxide dopants are reported. The morphologies and the crystalline structures of the TiO2 nanorods are characterized using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), tunneling electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The obtained results show an aggregation structure at high calcining temperatures with spherical particles and with Ti-O-Ti, Ti-O and Ag-O bonds. The effects of the chemical composition and the calcining temperature on the surface topography, lattice strain and phase crystallization are studied. The activation energy (E) of nanoparticle formation in a pure state during thermal treatment is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Y. Kim and M. Kang, Int. J. Photoenergy 10, 618642 (2012).

    Google Scholar 

  2. J. S. Jang, S. J. Hong and J. S. Lee, J. Korean Phys. Soc. 55, 1472 (2009).

    Article  Google Scholar 

  3. A. Loiudice, A. Rizzo, L. De Marco, M. R Belviso, G. Caputo, P. D Cozzoli and G. Gigli, Phys. Chem. 21, 3987 (2012).

    Google Scholar 

  4. M. Riazian and A. Bahari, Pramana J. Phys. 78, 319 (2012).

    Article  ADS  Google Scholar 

  5. M. Riazian and A. Bahari, Int. J. Phys. Sci. 6, 3756 (2011).

    Google Scholar 

  6. M. Riazian, N. Montazeri and E. Biazar, Orient. J. Chem. 27, 903 (2011).

    Google Scholar 

  7. M. Riazian and A. Bahari, Int. J. Nano Dimens. 3, 127 (2012).

    Google Scholar 

  8. U. Shaislamov, B. Yang and K. Park, J. Korean Phys. Soc. 61, 759 (2012).

    Article  ADS  Google Scholar 

  9. P. H. Borse, J. Y. Kim, J. S. Lee and K. T. Lim, J. Korean Phys. Soc. 61, 73 (2012).

    Article  ADS  Google Scholar 

  10. N. Iguchi, C. Cady, R. Snoeberger, B. Hunter, E. Sproviero, C. Schmuttenmaer, R. Crabtree, G. Brudvig and V. S Batista, Proc. SPIE 70340, 70340C (2008).

    Article  ADS  Google Scholar 

  11. Y. Xie, H. Qian, Y. Zhong, H. Guo and Y. Hu, Int. J. Photoenergy 10, 682138 (2012).

    Google Scholar 

  12. R. Jayasinghe, A. G. Unil Perera and Y. Zhao, Bull. Am. Phys. Soc. 57, 93 (2012).

    Google Scholar 

  13. J. Qiu, F. Zhuge, Xn. Li, X. Gao, X. Gan, L. Li, B. Weng, Z. Shi and Y. Hwae, J. Mater. Chem. 22, 3549 (2012).

    Article  Google Scholar 

  14. M. A. Pugachevskii, Phys. Astron. 38, 328 (2012).

    Google Scholar 

  15. H. Wang, Y. Liu, Z. Liu, H. Xu, Y. Deng and H. Shen, Cryst. Eng. Comm. 14, 2278 (2012).

    Article  Google Scholar 

  16. E. J. Schwalbach, S. H. Davis, P. W. Voorhees, J. A. Warren and D. Wheeler, J. Appl. Phys. 111, 24302 (2012).

    Article  Google Scholar 

  17. S. R. Gajjela, K. Ananthanarayanan, C. Yap, M. Grätzel and P. Balaya, Energy Environ. Sci. 3, 838 (2010).

    Article  Google Scholar 

  18. S. Mitra, A. Mandal, S. Banerjee, A. Datta, S. Bhattacharya, A. Bose and D. Chakravorty, Indian J. Phys. 85, 649 (2011).

    Article  ADS  Google Scholar 

  19. H. Rath, S. Anand, M. Mohapatra, P. Dash, T. Som, U. P. Singh and N. C. Mishra, Indian J. Phys. 83, 55 (2009).

    Google Scholar 

  20. Q. Li, B. Liu, L. Wang, D. Li, R. Liu, B. Zou, T. Cui and G. Zou, Mater. Sci. 900, 1828 (2012).

    Google Scholar 

  21. J. G. Li, T. Ishigaki and X. Sun, J. Phys. Chem. C 111, 4969 (2007).

    Article  Google Scholar 

  22. A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles and J. P. Jolivet, J. Mater. Chem. 11, 1116 (2001).

    Article  Google Scholar 

  23. M. G. Scott, Amorphous Metallic Alloys (Butterworth, London, 1983), p. 151.

    Google Scholar 

  24. A. K. Zaka, W. H. Abd. Majida, M. E. Abrishamib and R. Yousefi, Solid State Sci. 13, 251 (2011).

    Article  ADS  Google Scholar 

  25. M. Inagaki, R. Nonaka, B. Tryba and A. W. Morawski, Chemosphere 64, 437 (2006).

    Article  Google Scholar 

  26. J. Ivancoa, T. Haberb, J. R. Krenna, F. P. Netzera, R Reselb and M. G. Ramseya, Surf. Sci. 601, 178 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Riazian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riazian, M., Rad, S.D. & Azinabadi, R.R. Fabrication of pure and Ag-doped TiO2 nanorods and study of the lattice strain and the activation energy of the crystalline phases. Journal of the Korean Physical Society 62, 459–468 (2013). https://doi.org/10.3938/jkps.62.459

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.459

Keywords

Navigation