Skip to main content
Log in

Sparse magnetic resonance imaging reconstruction using the bregman iteration

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) reconstruction needs many samples that are sequentially sampled by using phase encoding gradients in a MRI system. It is directly connected to the scan time for the MRI system and takes a long time. Therefore, many researchers have studied ways to reduce the scan time, especially, compressed sensing (CS), which is used for sparse images and reconstruction for fewer sampling datasets when the k-space is not fully sampled. Recently, an iterative technique based on the bregman method was developed for denoising. The bregman iteration method improves on total variation (TV) regularization by gradually recovering the fine-scale structures that are usually lost in TV regularization. In this study, we studied sparse sampling image reconstruction using the bregman iteration for a low-field MRI system to improve its temporal resolution and to validate its usefulness. The image was obtained with a 0.32 T MRI scanner (Magfinder II, SCIMEDIX, Korea) with a phantom and an in-vivo human brain in a head coil. We applied random k-space sampling, and we determined the sampling ratios by using half the fully sampled k-space. The bregman iteration was used to generate the final images based on the reduced data. We also calculated the root-mean-square-error (RMSE) values from error images that were obtained using various numbers of bregman iterations. Our reconstructed images using the bregman iteration for sparse sampling images showed good results compared with the original images. Moreover, the RMSE values showed that the sparse reconstructed phantom and the human images converged to the original images. We confirmed the feasibility of sparse sampling image reconstruction methods using the bregman iteration with a low-field MRI system and obtained good results. Although our results used half the sampling ratio, this method will be helpful in increasing the temporal resolution at low-field MRI systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Liu, Y. M. Zou and L. Ying, in Proceedings of IEEE EMBS International Conference on Information Technology Applications in Biomedicine — ITAB (Shenzhen, China, May 30–31, 2008).

  2. R. Chartrand, in Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging (Boston, MA, USA, June 28–July 1, 2009).

  3. K. P. Pruessmann, M. Weiger, M. B. Scheidegger and P. Boesiger, Magn. Reson. Med. 42, 952 (1999).

    Article  Google Scholar 

  4. L. Donoho, IEEE Trans. Inf. Theory 52, 1289 (2006).

    Article  MathSciNet  Google Scholar 

  5. J. P. Haldar, D. Hernando and Z. P. Liang, IEEE Trans. Med. Imaging 30, 893 (2010).

    Article  Google Scholar 

  6. M. Lustig, D. Donoho and J. M. Pauly, Magn. Reson. Med. 58, 1182 (2007).

    Article  Google Scholar 

  7. B. Liu, K. King, S. M, J. Xie, J. Sheng and L. Ying, Magn. Reson. Med. 61, 145 (2009).

    Article  ADS  Google Scholar 

  8. E. J. Candes and J. Romberg, Inverse Prob. 23, 969 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. L. He, T. C. Chang, S. Osher, T. Fang and P. Speier, UCLA CAM Report. 06-35, 2006.

  10. J. Trzasko and A. Manduca, IEEE Trans. Med. Imaging 28, 106 (2009).

    Article  Google Scholar 

  11. U. Gamper, P. Boesiger and S. Kozerke, Magn. Reson. Med. 59, 365 (2008).

    Article  Google Scholar 

  12. M. Shiqian, Y. Wotao, Z. Yin and A. Chakraborty, in Proceedings of thr IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Miami, US, June 24–26, 2008).

  13. M. Hong, Y. Yu, H. Wang, F. Liu and S. Crozier, Phys. Med. Biol. 56, 6311 (2011).

    Article  Google Scholar 

  14. D. K. Sodickson and W. J. Manning, Magn. Reson. Med. 38, 591 (1997).

    Article  Google Scholar 

  15. M. A. Griswold, P. M. Jakob, M. Nittka, J. W. Goldfarb and A. Haase, Magn. Reson. Med. 44, 602 (2000).

    Article  Google Scholar 

  16. M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer and A. Haase, Magn. Reson. Med. 47, 1202 (2002).

    Article  Google Scholar 

  17. R. C. Krempien et al., Int. J. Radiat. Oncol. Biol. 53, 1350 (2002).

    Article  Google Scholar 

  18. F. Lakosi et al., Pathol. Oncol. Res. 15, 315 (2009).

    Article  Google Scholar 

  19. F. Lakosi et al., Pathol. Oncol. Res. 17, 315 (2011).

    Article  Google Scholar 

  20. J. A. Fessler, J. Magn. Reson. 188, 191 (2007).

    Article  ADS  Google Scholar 

  21. K. B. Lee et al., J. Korean Phys. Soc. 58, 1178 (2011).

    Article  Google Scholar 

  22. K. T. Block and J. Frahm, J. Magn. Reson. Imaging 21, 657 (2005).

    Article  Google Scholar 

  23. H. Schmiedeskamp, R. D. Newbould, L. J. Pisani, S. Skare, G. H. Glover, K. P. Pruessmann and R. Bammer, Magn. Reson. Med. 63, 959 (2010).

    Article  Google Scholar 

  24. E. H. Goo et al., J. Korean Phys. Soc. 59, 2855 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DH., Hong, CP. & Lee, MW. Sparse magnetic resonance imaging reconstruction using the bregman iteration. Journal of the Korean Physical Society 62, 328–332 (2013). https://doi.org/10.3938/jkps.62.328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.328

Keywords

Navigation