Skip to main content
Log in

Growth behavior of additional offspring with a beneficial reversal allele in the asymmetric sharply-peaked landscape in the coupled discrete-time mutation-selection model

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The probability of additional offspring with a beneficial reversal allele for growing to a size NC for a range of population sizes N, sequence lengths L, selective advantages s, and measuring parameters C was calculated for a haploid, asexual population in the coupled discrete-time mutation-selection model in an asymmetric sharply-peaked landscape with a positive selective advantage of the reversal allele over the optimal allele. The growing probability in the stochastic region was inversely proportional to the measuring parameter when C < 1/Ns, bent when C ≈ 1/Ns and saturated when C > 1/Ns. The crossing time and the time dependence of the increase in relative density of the reversal allele in the coupled discrete-time mutation-selection model was approximated using the Wright-Fisher two-allele model with the same selective advantage and corresponding effective mutation rate. The growth behavior of additional offspring with the reversal allele in the asymmetric sharply-peaked landscape in the coupled discrete-time mutation-selection model was controlled by the selective advantage of the reversal allele compared to the optimal allele and could be described by using the Wright-Fisher two-allele model, in spite of there being many other alleles with lower fitness, and in spite of there being two alleles, the optimal and reversal allele, separated by a low-fitness valley with a tunable depth and width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Rouzine, A. Rodrigo and J. M. Coffin, Microbiol. Mol. Biol. R. 65, 151 (2001).

    Article  Google Scholar 

  2. K. Jain and J. Krug, Genetics 175, 1275 (2007).

    Article  Google Scholar 

  3. Y. Iwasa, F. Michor and M. A. Nowak, Genetics 166, 1571 (2004).

    Article  Google Scholar 

  4. D. B. Weissman, M. M. Desai, D. S. Fisher and M. W. Feldman, Theor. Popul. Biol. 75, 286 (2009).

    Article  MATH  Google Scholar 

  5. S. J. Schrag, V. Perrot and B. R. Levin, Proc. R. Soc. London, Ser. B 264, 1287 (1997).

    Article  ADS  Google Scholar 

  6. B. R. Levin, V. Perrot and N. Walker, Genetics 154, 985 (2000).

    Google Scholar 

  7. S. Maisnier-Patin, O. G. Berg, L. Liljas and D. I. Andersson, Mol. Microbiol. 46, 355 (2002).

    Article  Google Scholar 

  8. A. M. Borman, S. Paulous and F. Clavel, J. Gen. Virol. 77, 419 (1996).

    Article  Google Scholar 

  9. A. G. Knudson, Nat. Rev. Cancer 1, 157 (2001).

    Article  Google Scholar 

  10. P. G. Higgs, Genet. Res. Camb. 63, 63 (1994).

    Article  Google Scholar 

  11. S. Franz and L. Peliti, J. Phys. A: Math. Gen. 30, 4481 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. R. Bürger, Genetica 102/103, 279 (1998).

    Article  Google Scholar 

  13. B. Drossel, Adv. Phys. 50, 209 (2001).

    Article  ADS  Google Scholar 

  14. L. Peliti, Europhys. Lett. 57, 745 (2002).

    Article  ADS  Google Scholar 

  15. K. S. Lee and W. Gill, Int. J. Mod. Phys. C 18, 1985 (2007).

    Article  ADS  MATH  Google Scholar 

  16. W. Gill, Physica A 388, 3124 (2009).

    Article  ADS  Google Scholar 

  17. W. Gill, J. Korean Phys. Soc. 57, 192 (2010).

    Article  ADS  Google Scholar 

  18. W. Gill, J. Korean Phys. Soc. 55, 709 (2009).

    Article  ADS  Google Scholar 

  19. W. J. Ewens, Mathmatical Population Genetics I. Theoretical Introduction Interdisciplinary Applied Mathmatics, 2nd ed. (Springer, Berlin, 2004), Vol. 27.

    Google Scholar 

  20. E. Baake, J. Biol. Syst. 3, 343 (1995).

    Article  Google Scholar 

  21. E. Baake, M. Baake and H. Wagner, Phys. Rev. Lett. 78, 559 (1997).

    Article  ADS  Google Scholar 

  22. H. Wagner, E. Baake and T. Gerisch, J. Stat. Phys. 92, 1017 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. E. Baake and W. Gabrial, Annual Reviews of Computational Physics VII, edited by D. Stauffer (World Scientific, Singapore, 2000).

    Google Scholar 

  24. J. Swetina and P. Schuster, Biophys. Chem. 16, 329 (1982).

    Article  Google Scholar 

  25. M. Kimura, Genetics 47, 713 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonpyong Gill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gill, W. Growth behavior of additional offspring with a beneficial reversal allele in the asymmetric sharply-peaked landscape in the coupled discrete-time mutation-selection model. Journal of the Korean Physical Society 62, 172–180 (2013). https://doi.org/10.3938/jkps.62.172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.172

Keywords

Navigation