Skip to main content
Log in

Electron and hole transmission through superconductor — Normal metal interfaces

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We have investigated the transmission of electrons and holes through interfaces between superconducting aluminum (T c = 1.2K) and various normal non-magnetic metals (copper, gold, palladium, platinum, and silver) using Andreev-reflection spectroscopy at T = 0.1K. We analysed the point contacts with the modified BTK theory that includes Dynes’ lifetime as a fitting parameter Γ in addition to superconducting energy gap 2Δ and normal reflection described by Z. For contact areas from 1 nm2 to 10000nm2 the BTK Z parameter was 0.5, corresponding to transmission coefficients of about 80%, independent of the normal metal. The very small variation of Z indicates that the interfaces have a negligible dielectric tunneling barrier. Fermi surface mismatch does not account for the observed transmission coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Blonder, M. Tinkham and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).

    Article  ADS  Google Scholar 

  2. G. E. Blonder and M. Tinkham, Phys. Rev. B 27, 112 (1983).

    Article  ADS  Google Scholar 

  3. J. G. Simmons, J. Appl. Phys. 35, 2655 (1964).

    Article  ADS  Google Scholar 

  4. G. Repphun and J. Halbritter, J. Vac. Sci. Technol. A 13, 1693 (1995).

    Article  ADS  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Volume 3. Quantum Mechanics (3rd Edition, Pergamon Press, Oxford 1977), p. 60.

    Google Scholar 

  6. F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz and H. Schcofer, Phys. Rev. Lett. 43, 1892 (1979).

    Article  ADS  Google Scholar 

  7. U. Poppe, J. Magn. Magn. Materials 52, 157 (1985).

    Article  ADS  Google Scholar 

  8. F. Steglich, U. Rauchschwalbe, U. Gottwick, H. M. Mayer, G. Sparn, N. Grewe, U. Poppe and J. J. M. Franse, J. Appl. Phys. 57, 3054 (1985).

    Article  ADS  Google Scholar 

  9. E. W. Fenton, Solid State Commun. 54, 709 (1985).

    Article  ADS  Google Scholar 

  10. K. Gloos, F. Martin, C. Schank, C. Geibel and F. Steglich, Physica B: Condensed Matter 206–207, 282 (1995).

    Article  Google Scholar 

  11. K. Gloos, C. Geibel, R. Müller-Reisener and C. Schank, Physica B: Condensed Matter 218, 169 (1996).

    Article  ADS  Google Scholar 

  12. K. Gloos, F. B. Anders, B. Buschinger, C. Geibel, K. Heuser, F. Jährling, J. S. Kim, R. Klemens, R. Müller-Reisener, C. Schank and G. R. Stewart, J. Low Temp. Phys. 105, 37 (1996).

    Article  ADS  Google Scholar 

  13. G. Deutscher and P. Nozi`eres, Phys. Rev. B 50, 13557 (1994).

    Article  ADS  Google Scholar 

  14. Y. De Wilde, J. Heil, A. G. M. Jansen, P. Wyder, R. Deltour, W. Assmus, A. Menovsky, W. Sun and L. Taillefer, Phys. Rev. Lett. 72, 2278 (1994).

    Article  ADS  Google Scholar 

  15. W. K. Park, J. L. Sarrao, J. D. Thompson and L. H. Greene, Phys. Rev. Lett. 100, 177001 (2008).

    Article  ADS  Google Scholar 

  16. C. Attanasio in: Nanoscale Devices — Fundamentals and Applications, ed R. Gross et al. (Springer, 2006) pp 241.

  17. V. N. Kushnir, S. L. Prischepa, C. Cirillo and C. Attanasio, J. Appl. Phys. 106, 113917 (2009).

    Article  ADS  Google Scholar 

  18. W. P. Pratt Jr. and J. Bass, Appl. Surface Science 256, 399 (2009).

    Article  ADS  Google Scholar 

  19. A. Sharma, N. Theodoropoulou, S. Wang, K. Xia, W. P. Pratt, Jr. and J. Bass, J. Appl. Phys. 105, 123920 (2009).

    Article  ADS  Google Scholar 

  20. P. X. Xu, K. Xia, M. Zwierzycki, M. Talanana and P. J. Kelly, Phys. Rev. Lett. 96, 176602 (2006).

    Article  ADS  Google Scholar 

  21. P. X. Xu and K. Xia, Phys. Rev. B 74, 184026 (2006).

    Google Scholar 

  22. R. J. Soulen Jr., J.M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowack, J. S. Moodera, A. Barry and J. M. D. Coey, Science 282, 85 (1998).

    Article  ADS  Google Scholar 

  23. Y. Bugoslavsky, Y. Miyoshi, S. K. Clowes, W. R. Branford, M. Lake, I. Brown, A. D. Caplin and L. F. Cohen, Phys. Rev. B 71, 104523 (2005).

    Article  ADS  Google Scholar 

  24. V. Baltz, A. D. Naylor, K. M. Seemann, W. Elder, S. Sheen, K. Westerholt, H. Zabel, G. Burnell, C. H. Marrows and B. J. Hickey, J. Phys.: Condens. Matter 21, 095701 (2009).

    Article  ADS  Google Scholar 

  25. P. M. Tedrow and R. Meservey, Phys. Rev. B 7, 318 (1973).

    Article  ADS  Google Scholar 

  26. C. H. Kant, O. Kurnosikov, A. T. Filip, P. LeClair, H. J. M. Swagten and W. J. M. de Jonge, Phys. Rev. B 66, 212403 (2002).

    Article  ADS  Google Scholar 

  27. G. T. Woods, J. Soulen, Jr., I. Mazin, B. Nadgorny, M. S. Osofsky, J. Sanders, H. Srikanth, W. F. Egelhoff and R. Datla, Phys. Rev. B 70, 054416 (2004).

    Article  ADS  Google Scholar 

  28. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, 1976), p. 38.

    Google Scholar 

  29. A. Pleceník, M. Grajcar and Š. Beňačka, P. Seidel and A. Pfuch, Phys. Rev. B 49, 10016 (1994).

    Article  Google Scholar 

  30. K. Gloos, Low Temp. Phys. 35, 935 (2009) [Fiz. Nizk. Temp. Phys. 35, 1204 (2009)].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Gloos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloos, K., Tuuli, E. Electron and hole transmission through superconductor — Normal metal interfaces. Journal of the Korean Physical Society 62, 1575–1579 (2013). https://doi.org/10.3938/jkps.62.1575

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.1575

Keywords

Navigation