Skip to main content
Log in

The Andreev conductance in superconductor–insulator–normal metal structures

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Andreev subgap conductance at 0.08–0.2 K in thin-film superconductor (aluminum)–insulator–normal metal (copper, hafnium, or aluminum with iron-sublayer-suppressed superconductivity) structures is studied. The measurements are performed in a magnetic field oriented either along the normal or in the plane of the structure. The dc current–voltage (I–U) characteristics of samples are described using a sum of the Andreev subgap current dominating in the absence of the field at bias voltages U < (0.2–0.4)Δc/e (where Δc is the energy gap of the superconductor) and the single-carrier tunneling current that predominates at large voltages. To within the measurement accuracy of 1–2%, the Andreev current corresponds to the formula \({I_n} + {I_s} = {K_n}\tanh \left( {{{eU} \mathord{\left/ {\vphantom {{eU} {2k{T_{eff}}}}} \right. \kern-\nulldelimiterspace} {2k{T_{eff}}}}} \right) + {K_s}{{\left( {{{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} \right)} \mathord{\left/ {\vphantom {{\left( {{{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} \right)} {\sqrt {1 - {{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} }}} \right. \kern-\nulldelimiterspace} {\sqrt {1 - {{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} }}\) following from a theory that takes into account mesoscopic phenomena with properly selected effective temperature T eff and the temperature- and fieldindependent parameters K n and K s (characterizing the diffusion of electrons in the normal metal and superconductor, respectively). The experimental value of K n agrees in order of magnitude with the theoretical prediction, while K s is several dozen times larger than the theoretical value. The values of T eff in the absence of the field for the structures with copper and hafnium are close to the sample temperature, while the value for aluminum with an iron sublayer is several times greater than this temperature. For the structure with copper at T = 0.08–0.1 K in the magnetic field B|| = 200–300 G oriented in the plane of the sample, the effective temperature T eff increases to 0.4 K, while that in the perpendicular (normal) field B ≈ 30 G increases to 0.17 K. In large fields, the Andreev conductance cannot be reliably recognized against the background of single- carrier tunneling current. In the structures with hafnium and in those with aluminum on an iron sublayer, the influence of the magnetic field is not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Giazotto, T. T. Heikkil, A. Luukanen, et al., Rev. Mod. Phys. 78, 217 (2006).

    Article  ADS  Google Scholar 

  2. A. V. Feshchenko, L. Casparis, I. M. Khaymovich, et al., Phys. Rev. Appl. 4, 034001 (2015).

    Article  ADS  Google Scholar 

  3. H. Q. Nguyen, M. Meschke, H. Courtois, and J. P. Pekola, Phys. Rev. Appl. 2, 054001 (2014).

    Article  ADS  Google Scholar 

  4. M. Tarasov, V. Edelman, A. Ermakov, et al., IEEE Trans. Terahertz Sci. Technol. 5, 44 (2015).

    Google Scholar 

  5. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).

    Article  ADS  Google Scholar 

  6. H. Pothier, S. Gueron, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 73, 2488 (1994).

    Article  ADS  Google Scholar 

  7. S. Rajauria, P. Gandit, T. Fournier, et al., Phys. Rev. Lett. 100, 207002 (2008).

    Article  ADS  Google Scholar 

  8. H. Courtois, S. Rajauria, P. Gandit, et al., J. Low. Temp. Phys. 153, 325 (2008).

    Article  ADS  Google Scholar 

  9. P. J. Lowell, G. C. O’Neil, J. M. Underwood, and J. N. Ullom, J. Low. Temp. Phys. 167, 392 (2012).

  10. T. Greibe, M. P. V. Stenberg, C. M. Wilson, et al., Phys. Rev. Lett. 106, 097001 (2011).

    Article  ADS  Google Scholar 

  11. A. V. Seliverstov, M. A. Tarasov, and V. S. Edel’man, JETP Lett. 103, 484 (2016).

    Article  ADS  Google Scholar 

  12. F. W. J. Hekking and Yu. V. Nazarov, Phys. Rev. B 49, 6847 (1994).

    Article  ADS  Google Scholar 

  13. A. G. Semenov, A. D. Zaikin, and L. S. Kuzmin, Phys. Rev. B 86, 144529 (2012).

    Article  ADS  Google Scholar 

  14. M. A. Tarasov and V. S. Edel’man, JETP Lett. 101, 740 (2015).

    Article  ADS  Google Scholar 

  15. M. A. Tarasov, V. S. Edel’man, M. Yu. Fominskii, et al., Zh. Radioelektron., No. 1 (2016).

  16. V. S. Edelman, Instrum. Exp. Tech. 52, 301 (2009).

    Article  Google Scholar 

  17. D. Golubev and L. Kuzmin, J. Appl. Phys. 89, 6464 (2001).

    Article  ADS  Google Scholar 

  18. B. Pannetier, J. Chaussy, and R. Rammal, Phys. Scripta T 13, 245 (1986).

    Article  ADS  Google Scholar 

  19. G. D. Kneip, J. O. Betterton, and J. O. Scarbrough, Phys. Rev. 130, 1687 (1963).

    Article  ADS  Google Scholar 

  20. N. E. Phillips, Phys. Rev. 114, 676 (1959).

    Article  ADS  Google Scholar 

  21. A. F. Volkov and T. M. Klapwijk, Phys. Lett. A 168, 217 (1992).

    Article  ADS  Google Scholar 

  22. A. F. Volkov, JETP Lett. 55, 746 (1992).

    ADS  Google Scholar 

  23. D. A. Dikin, M. J. Black, and V. Chandrasekhar, Phys. Rev. Lett. 87, 187003 (2001).

    Article  ADS  Google Scholar 

  24. A. G. Semenov and A. D. Zaikin, arXiv:1410.7932.

  25. I. V. Grigorieva, W. Escoffier, J. Richardson, et al., Phys. Rev. Lett. 96, 077005 (2006).

    Article  ADS  Google Scholar 

  26. J. E. Cox, Phys. Lett. A 28, 326 (1968).

    Article  ADS  Google Scholar 

  27. T. S. Smith and J. G. Dfunt, Phys. Rev. 88, 1172 (1952).

    Article  ADS  Google Scholar 

  28. N. Kurti and F. Simon, Proc. R. Soc. London A 151, 610 (1935).

    Article  ADS  Google Scholar 

  29. B. W. Roberts, J. Phys. Chem. Ref. Data 5, 581 (1976).

    Article  ADS  Google Scholar 

  30. A. Glatz, A. A. Varlamov, and V. M. Vinokur, arXiv:1210.4206.

  31. O. A. Bannykh, P. B. Budberg, S. P. Alisova, et al., State Diagrams of Binary and Multicomponent Systems Based on Iron (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Edel’man.

Additional information

Original Russian Text © A.V. Seliverstov, M.A. Tarasov, V.S. Edel’man, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 4, pp. 752–766.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seliverstov, A.V., Tarasov, M.A. & Edel’man, V.S. The Andreev conductance in superconductor–insulator–normal metal structures. J. Exp. Theor. Phys. 124, 643–656 (2017). https://doi.org/10.1134/S1063776117030153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117030153

Navigation