Skip to main content
Log in

Effect of transition Metal (Co, Ni and Cu) doping on lattice volume, band gap, morphology and saturation magnetization of ZnO nanostructures

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Herein, the effect of different TM (Co, Ni and Cu) doping on structural, optical and magnetic properties of ZnO nanostructures has been studied. Zn1−x TM x O (TM=Co, Ni and Cu) nanostructures were prepared by a microwave assisted chemical route and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy (TEM), Raman spectroscopy, UV-Vis and magnetization measurements. XRD and TEM analyses showed that the TM-doped ZnO nanostructures had single phase nature with the wurtzite structure. Changes in the lattice volume, bandgap energy, morphology and the saturation magnetization of Zn1−x TM x O nanostructures were found to be dependent on the type of TM dopants. Lattice volume, bondlength and bandgap determined from XRD and UV-Vis, respectively, were found to decrease as the atomic number of the dopant increased from Co to Cu. Magnetic studies showed that all the TM-doped ZnO exhibited room temperature ferromagnetism and the decreasing trend of saturation magnetization was observed with the increase of 3d electrons number from Co to Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Johnson et al., J. Phys. Chem. B 109, 14278 (2005).

    Article  Google Scholar 

  2. S. A. Wolf, D. D. Awschalom, R. Buhrman, J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, Science 294, 1488 (2001).

    Article  ADS  Google Scholar 

  3. H. Ohno et al., Science 281, 951 (1998).

    Article  ADS  Google Scholar 

  4. T. Fukumura, Y. Yamada, H. T. Oyosaki, T. Hasegawa, H. Koinuma and M. Kawasaki, Appl. Surf. Sci. 223, 62 (2004).

    Article  ADS  Google Scholar 

  5. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).

    Article  Google Scholar 

  6. J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).

    Article  ADS  Google Scholar 

  7. J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).

    Article  ADS  Google Scholar 

  8. Z. J. Wang, J. K. Tang, L. D. Tung, W. L. Zhou and L. Spinu, J. Appl. Phys. 93, 7870 (2003).

    Article  ADS  Google Scholar 

  9. N. Y. H. Hong, J. Sakai and A. Hassini, Appl. Phys. Lett. 84, 2602 (2004).

    Article  ADS  Google Scholar 

  10. J. J. Liu, M. H. Yu and W. L. Zhou, Appl. Phys. Lett. 87, 172505 (2005).

    Article  ADS  Google Scholar 

  11. F. Ahmed, N. Arshi, M. S. Anwar, S. H. Lee, E. S. Byon, N. J. Lyu and B. H. Koo, Current Appl. Phys. 12, S174 (2012).

    Article  ADS  Google Scholar 

  12. F. Ahmed, S. Kumar, N. Arshi, M. S. Anwar, B. H. Koo and C. G. Lee, Microelectronic Engineering 89, 129 (2012).

    Article  Google Scholar 

  13. F. Ahmed, S. Kumar, N. Arshi, M. S. Anwar, B. H. Koo and C. G. Lee, J. Nanosci. Nanotechn. 12, 1386 (2012).

    Article  Google Scholar 

  14. F. Ahmed, S. Kumar, N. Arshi, M. S. Anwar and B. H. Koo, Cryst Eng Comm. 14, 4016 (2012).

    Article  Google Scholar 

  15. F. Ahmed, S. Kumar, N. Arshi, M. S. Anwar, S. N. Heo, G. W. Kim, J. Lu and B. H. Koo, J. Korean Phys. Soc. 60, 1644 (2012).

    Article  ADS  Google Scholar 

  16. N. Theodoropoulou, A. Hebard, D. Norton, J. Budai, L. Boatner, J. Lee, Z. Khim, Y. Park, M. Overberg, S. Pearton and R. Wilson, Solid State Electron. 47, 2231 (2003).

    Article  ADS  Google Scholar 

  17. A. Gupta, H. Cao, K. Parekh, K. Rao, A. Raju and U. Waghmare, J. Appl. Phys. 101, 09N513 (2007).

    Article  Google Scholar 

  18. M. Venkatesan, C. B. Fitzgerald, J. G. Lunney and J. M. D. Coey, Phys. Rev. Lett. 93, 177206 (2004).

    Article  ADS  Google Scholar 

  19. J. H. Kim, H. Kim, D. Kim, Y. E. Ihm and W. K. Choo, J. Appl. Phys. 92, 6066 (2002).

    Article  ADS  Google Scholar 

  20. J. H. Park, M. G. Kim, H. M. Jang and S. Ryu, Appl. Phys. Lett. 84, 1338 (2004).

    Article  ADS  Google Scholar 

  21. A. Sundaresan, R. Bhargavi, N. Rangrajan, U. Siddesh and C. N. R. Rao, Phys. Rev. B 74, 161306 (2006).

    Article  ADS  Google Scholar 

  22. F. Ahmed, S. Kumar, N. Arshi, M. S. Anwar, B. H. Koo and C. G. Lee, Funct. Mater. Lett. 4, 1 (2011).

    Article  Google Scholar 

  23. M. A. Garcia, J. M. Merino, P. E. Fernndez, A. Quesada, J. Venta de la, M. L. Ruíz Gonzlez, G. R. Castro, P. Crespo, J. Llopis, J. M. Gonzlez-Calbet and A. Hernando, Nano Lett. 7, 1489 (2007).

    Article  ADS  Google Scholar 

  24. F. Ahmed, S. Kumar, N. Arshi, M. S. Anwar, B. H. Koo and C. G. Lee, Thin Solid Films 519, 8199 (2011).

    Article  ADS  Google Scholar 

  25. S. Kumar, Y. J. Kim, B. H. Koo, S. Gautam, K. H. Chae, R. Kumar and C. G. Lee, Mater. Lett. 63, 194 (2009).

    Article  Google Scholar 

  26. J. Anghel, A. Thurber, D. A. Tenne, C. B. Hanna and A. Punnoose, J. Appl. Phys. 107, 09E314 (2010).

    Article  Google Scholar 

  27. C. S. Barret and T. B. Massalski, Structure of Metals (Pergamon Press, Oxford, 1980).

    Google Scholar 

  28. H. Morkoc and U. Ozgur, Zinc Oxide: Fundamentals, Materials and Device Technology (Willey-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009).

    Google Scholar 

  29. T. C. Damen, S. P. S. Porto and B. Tell, Phys. Rev. 142, 570 (1966).

    Article  ADS  Google Scholar 

  30. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz and M. Grundmann, Appl. Phys. Lett. 83, 1074 (2003).

    Article  Google Scholar 

  31. P. Parayanthal and F. H. Pollak, Phys. Rev. Lett. 52, 1822 (1984).

    Article  ADS  Google Scholar 

  32. J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall Inc., Englewoord Cliffs, NJ (1971).

    Google Scholar 

  33. T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma and M. Kawasaki, Appl. Surf. Sci. 223, 62 (2004).

    Article  ADS  Google Scholar 

  34. C. Zener et al., Phys. Rev. 81, 440 (1951).

    Article  ADS  MATH  Google Scholar 

  35. A. Punnoose, J. Hays, A. Thurber, M. H. Engelhard, R. K. Kukkadapu, C. Wang, V. Shutthanandan and S. Thenvuthasan, Phys. Rev. B 72, 054402 (2005).

    Article  ADS  Google Scholar 

  36. A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard and C. Wang, J. Hays, A. Punnoose, Phys. Rev. B 76, 165206 (2007).

    Article  ADS  Google Scholar 

  37. C. Van Komen, A. Punnoose and M. S. Seehra, Solid State Commun. 149, 2257 (2009).

    Article  ADS  Google Scholar 

  38. J. Hays, A. Punnoose, R. Baldner, M. H. Engelhard, J. Peloquin and K. M. Reddy, Phys. Rev. B 72, 075203 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bon Heun Koo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, F., Arshi, N., Anwar, M.S. et al. Effect of transition Metal (Co, Ni and Cu) doping on lattice volume, band gap, morphology and saturation magnetization of ZnO nanostructures. Journal of the Korean Physical Society 62, 1479–1484 (2013). https://doi.org/10.3938/jkps.62.1479

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.1479

Keywords

Navigation