Skip to main content
Log in

Improving functional properties of ZnO nanostructures by transition-metal doping: role of aspect ratio

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Herein, pure and 3 % transition metals (TM; Cr2+ and Fe2+ ions)-doped ZnO nanostructures with high aspect ratios were prepared by microwave–hydrothermal method. X-ray diffraction, selected area electron diffraction and high resolution transmission electron microscopy analyses revealed that all the TM (Cr2+ and Fe2+ ions)-doped ZnO nanostructures have wurtzite structure and no secondary phase was detected. Field emission scanning electron microscopy and transmission electron microscopy results confirmed a higher aspect ratio and highly crystalline nature of nanostructures. Raman spectra reveled that no defect related mode was observed which indicated that the nanostructures have high quality and negligible defects. The value of bandgap was found to be close to the standard value of ZnO, and increased with the increase in atomic number of TM dopants, which indicated that the Cr2+ and Fe2+ ions were uniformly substituted in ZnO. Room temperature ferromagnetism was observed in all the TM (Cr2+ and Fe2+ ions)-doped ZnO nanostructures and the value of saturation magnetization (Ms) and remanent magnetization (Mr) were increased with TM (Cr2+ and Fe2+ ions) dopants. The modification in the magnetization and Hc by microwave hydrothermal might be due to the high aspect ratio of nanostructures. Hence, these nanostructures pave the way for development of multifunctional spintronics and optoelectronic devices that integrate structural, morphological, optical, and magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrant D (2000) Science 287:1019

    Article  Google Scholar 

  2. Jung SW, An SJ, Yi GC, Jung CU, Lee SI, Cho S (2002) Appl Phys Lett 80:4561

    Article  Google Scholar 

  3. Venkatesan M, Fitzgerald CB, Lunney JG, Coey JMD (2004) Phys Rev Lett 93:177206

    Article  Google Scholar 

  4. Neal JR, Behan AJ, Ibrahim RM, Blythe HJ, Ziese M, Fox AM, Gehring GA (2006) Phys Rev Lett 96:197208

    Article  Google Scholar 

  5. Liu JJ, Yu MH, Zhou WL (2005) Appl Phys Lett 87:172505

    Article  Google Scholar 

  6. Ahmed F, Arshi N, Anwar MS, Lee SH, Byon ES, Lyu NJ, Koo BH (2012) Curr Appl Phys 12:S174

    Article  Google Scholar 

  7. Ahmed F, Kumar S, Arshi N, Anwar MS, Koo BH, Lee CG (2012) Microelectron Eng 89:129

    Article  Google Scholar 

  8. Ahmed F, Kumar S, Arshi N, Anwar MS, Koo BH, Lee CG (2012) J Nanosci Nanotechnol 12:1386

    Article  Google Scholar 

  9. Ahmed F, Kumar S, Arshi N, Anwar MS, Heo SN, Kim GW, Koo BH (2012) J Korean Phys Soc 60:1644

    Article  Google Scholar 

  10. Ahmed F, Kumar S, Arshi N, Anwar MS, Koo BH (2012) Cryst Eng Comm 14:4016

    Article  Google Scholar 

  11. Theodoropoulou N, Hebard A, Norton D, Budai J, Boatner L, Lee J (2003) Solid State Electron 47:2231

    Article  Google Scholar 

  12. Gupta A, Cao H, Parekh K, Rao K, Raju A, Waghmare U (2007) J Appl Phys 101:09N513

    Google Scholar 

  13. Venkatesan M, Fitzgerald CB, Lunney JG, Coey JMD (2004) Phys Rev Lett 93:177206

    Article  Google Scholar 

  14. Kim JH, Kim H, Kim D, Ihm YE, Choo WK (2002) J Appl Phys 92:6066

    Article  Google Scholar 

  15. Park JH, Kim MG, Jang HM, Ryu S (2004) Appl Phys Lett 84:1338

    Article  Google Scholar 

  16. Sundaresan A, Bhargavi R, Rangrajan N, Siddesh U, Rao CNR (2006) Phys Rev B 74:161306

    Article  Google Scholar 

  17. Ahmed F, Kumar S, Arshi N, Anwar MS, Koo BH, Lee CG (2011) Funct Mater Lett 4:1

    Article  Google Scholar 

  18. Garcia MA, Merino JM, Pinel EF, Quesada A, Venta J, Gonzlez MLR (2007) Nano Lett 7:1489

    Article  Google Scholar 

  19. Ahmed F, Kumar S, Arshi N, Anwar MS, Koo BH, Lee CG (2011) Thin Solid Films 519:8199

    Article  Google Scholar 

  20. Kumar S, Kim YJ, Koo BH, Gautam S, Chae KH, Kumar R (2009) Mater Lett 63:194

    Article  Google Scholar 

  21. Breviglieri ST, Cavalherio ETG, Chierice GO (2000) Thermochim Acta 356:79

    Article  Google Scholar 

  22. Roberts BK, Pakhomov AB, Shutthanandan VS, Krishnan KM (2005) J Appl Phys 97:10D310

    Article  Google Scholar 

  23. Xu HY, Liu YC, Xu CS, Liu YX, Shao CL, Mu R (2006) J Chem Phys 124:074707

    Article  Google Scholar 

  24. Anghel J, Thurber A, Tenne DA, Hanna CB, Punnoose A (2010) J Appl Phys 107:09E314

    Article  Google Scholar 

  25. Shannon RD (1976) Acta Crystallogr Sect A 32:751

    Article  Google Scholar 

  26. Senthilkumaar S, Rajendran K, Banerjee S, Chini TK, Sengodan V (2008) Mater Sci Semicond Process 11:6

    Article  Google Scholar 

  27. Dinesha ML, Jayanna HS, Mohanty S, Ravi S (2008) J Alloys Compd 480:618

    Google Scholar 

  28. Wang Iqbal J, Shan X, Huang G, Fu H, Yu R (2009) Mater Chem Phys 113:103

    Article  Google Scholar 

  29. Damen TC, Porto SPS, Tell B (1966) Phys Rev 142:570

    Article  Google Scholar 

  30. Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev EM (2003) Appl Phys Lett 83:1074

    Article  Google Scholar 

  31. Parayanthal P, Pollak FH (1984) Phys Rev Lett 52:1822

    Article  Google Scholar 

  32. Xu HY, Liu YC, Xu CS, Liu YX, Shao CL, Mu R (2006) J Chem Phys 124:074707

    Article  Google Scholar 

  33. Thakur JS, Auner GW, Naik VM, Sudakar C, Kharel P, Lawes G (2007) J Appl Phys 102:093904

    Article  Google Scholar 

  34. Pankove JI (1971) Optical processes in semiconductors. Prentice-Hall Inc., Englewoord Cliffs

    Google Scholar 

  35. Qiu X, Li L, Li G (2006) Appl Phys Lett 88:114103

    Article  Google Scholar 

  36. Radovanovic P, Gamelin DR (2003) Phys Rev Lett 91:157202

    Article  Google Scholar 

  37. Fukumura T, Yamada Y, Toyosaki H, Hasegawa T, Koinuma H, Kawasaki M (2004) Appl Surf Sci 223:62

    Article  Google Scholar 

  38. Zener C (1951) Phys Rev 81:440

    Article  Google Scholar 

  39. Punnoose A, Hays J, Thurber A, Engelhard MH, Kukkadapu RK, Wang C (2005) Phys Rev B 72:054402

    Article  Google Scholar 

  40. Thurber A, Reddy KM, Shutthanandan V, Engelhard MH, Wang C, Hays J (2007) Phys Rev B 76:165206

    Article  Google Scholar 

  41. Komen CV, Punnoose A, Seehra MS (2009) Solid State Commun 149:2257

    Article  Google Scholar 

  42. Xing GZ, Yi JB, Tao JG, Liu T, Wong LM, Zhang Z, Li GP, Wang SJ, Ding J, Sum TC, Huan CHA, Wu T (2008) Adv Mater 20:3521

    Article  Google Scholar 

  43. Stoner EC, Wohlfarth EP (1984) Philos Trans R Soc Lond Ser A 240:559

    Google Scholar 

  44. Choi J, Oh SJ, Ju H, Cheon J (2005) Nano Lett 5:2179

    Article  Google Scholar 

  45. Girgisa E, Schelten J (2000) Appl Phys Lett 76:3780

    Article  Google Scholar 

  46. Hays J, Punnoose A, Baldner R, Engelhard MH, Peloquin J, Reddy KM (2005) Phys Rev B 72:075203

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Education, Science and Technology (MEST) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation (2012H1B8A2026212). This work was also supported by the MSIP (Ministry of Science, ICT & Future Planning), Korea. Under the ITRC (Information Technology Research Centre) support program supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2014-H0301-14-1016). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-R1A1B3000784).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bon Heun Koo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F., Arshi, N., Anwar, M.S. et al. Improving functional properties of ZnO nanostructures by transition-metal doping: role of aspect ratio. J Sol-Gel Sci Technol 72, 1–7 (2014). https://doi.org/10.1007/s10971-014-3412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3412-7

Keywords

Navigation