Skip to main content
Log in

XMCD study of the magnetic exchange coupling in a fluoride-bridged Dy-Cr molecular cluster

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We have studied the fluoride-bridged Dy-Cr molecular nanomagnet [Dy(hfac)4-CrF2(py)4]·1/2CHCl3 by x-ray magnetic circular dichroism (XMCD). The obtained element-specific magnetization curves allow for a quantification of the sign and strength of the magnetic exchange coupling between the Dy and the Cr ions. In an effective spin-1/2 formalism only taking into account the ground Kramers doublet of the DyIII ion, we find a coupling strength of j eff,z = −2.3(1) cm−1. Further, we find that the ground Kramers doublet is nearly perfectly axial with g eff,z ,Dy = 19.6(6) and g eff,xy ,Dy = 0(2). The coupling value corresponds to a “true”, non-effective isotropic coupling of j = −0.16 cm−1 when taking into account a full J = 15/2 angular momentum. This coupling strength is comparable to that of j = −0.18 cm−1 previously found in the related fluoride-bridged compound Dy-Cr-Dy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kahn, in Molecular Magnetism (Wiley-VCH, Weinheim, Germany, 1993).

    Google Scholar 

  2. D. Gatteschi, R. Sessoli and J. Villain, in Molecular Nanomagnets (Oxford University Press, 2006).

    Book  Google Scholar 

  3. A. R. Rocha, V. M. Garcia-suarez, S. W. Bailey, C. J. Lambert, J. Ferrer and S. Sanvito, Nat. Mater. 4, 335 (2005); L. Bogani and W. Wernsdorfer, Nat. Mater. 7, 179 (2008).

    Article  ADS  Google Scholar 

  4. M. N. Leuenberger and D. Loss, Nature 410, 789 (2001).

    Article  ADS  Google Scholar 

  5. F. Torres, J. M. Hernandez, X. Bohigas and J. Tejada, Appl. Phys. Lett. 77, 3248 (2000); R. Sessoli, Angew. Chem. Int. Ed. 51, 43 (2012).

    Article  ADS  Google Scholar 

  6. R. E. P. Winpenny, Chem. Soc. Rev. 27, 447 (1998); R. Sessoli and A. K. Powell, Coord. Chem. Rev. 253, 2328 (2009).

    Article  Google Scholar 

  7. A. Figuerola, V. Tangoulis and Y. Sanakis, Chem. Phys. 334, 204 (2007); A. Okazawa, T. Nogami, H. Nojiri and T. Ishida, Inorg. Chem. 47, 9763 (2008); L. Sorace, C. Sangregorio, A. Figuerola, C. Benelli and D. Gatteschi, Chem. Eur. J. 15, 1377 (2009).

    Article  ADS  Google Scholar 

  8. H. U. Güdel, A. Furrer and H. Blank, Inorg. Chem. 29, 4081 (1990); M. A. Aebersold, H. U. Güdel, A. Hauser, A. Furrer, H. Blank and R. Kahn, Phys. Rev. B 48, 12723 (1993).

    Article  Google Scholar 

  9. G. van der Laan and B. T. Thole, Phys. Rev. B 43, 13401 (1991); J. Stöhr, J. Magn. Magn. Mater. 200, 470 (1999); T. Funk, A. Deb, S. J. George, H. Wang and S. P. Cramer, Coord. Chem. Rev. 249, 3 (2005).

    Article  ADS  Google Scholar 

  10. J. Dreiser, K. S. Pedersen, C. Piamonteze, S. Rusponi, Z. Salman, M. E. Ali, M. Schau-Magnussen, C. A. Thuesen, S. Piligkos, H. Weihe, H. Mutka, O. Waldmann, P. Oppeneer, J. Bendix, F. Nolting and H. Brune, Chem. Sci. 3, 1024 (2012).

    Article  Google Scholar 

  11. A. McRobbie, A. R. Sarwar, S. Yeninas, H. Nowell, M. L. Baker, D. Allan, M. Luban, C. A. Muryn, R. G. Pritchard, R. Prozorov, G. A. Timco, F. Tuna, G. F. S. Whitehead and R. E. P. Winpenny, Chem. Commun. 47, 6251 (2011); T. Birk, K. S. Pedersen, C. A. Thuesen, T. Weyhermüller, M. Schau-Magnussen, S. Piligkos, H. Weihe, S. Mossin, M. Evangelisti and J. Bendix, Inorg. Chem. 51, 5435 (2012); C. Aa. Thuesen, K. S. Pedersen, M. Schau-Magnussen, M. Evangelisti, J. Vibenholt, S. Piligkos, H. Weihe and J. Bendix, Dalton Trans. 41, 11284 (2012).

    Article  Google Scholar 

  12. C. Piamonteze, U. Flechsig, S. Rusponi, J. Dreiser, J. Heidler, M. Schmidt, R. Wetter, T. Schmidt, H. Pruchova, J. Krempasky, C. Quitmann, H. Brune, F. Nolting, J. Synchrotron Rad. 19, 661 (2012).

    Article  Google Scholar 

  13. J. Krempasky, U. Flechsig, T. Korhonen, D. Zimoch, C. Quitmann and F. Nolting, AIP Conf. Proc. 1234, 705 (2010).

    Article  ADS  Google Scholar 

  14. B. T. Thole, P. Carra, F. Sette and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992); P. Carra, B. T. Thole, M. Altarelli and X. Wang, Phys. Rev. Lett. 70, 694 (1993).

    Article  ADS  Google Scholar 

  15. Y. Teramura, A. Tanaka and T. Jo, J. Phys. Soc. Jpn. 65, 1053 (1996); C. Piamonteze, P. Miedema and F. M. F. de Groot, Phys. Rev. B 80, 184410 (2009).

    Article  ADS  Google Scholar 

  16. V. I. Lebedev and D. N. Laikov, Dokl. Math. 366, 741 (1999).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Dreiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreiser, J., Piamonteze, C., Nolting, F. et al. XMCD study of the magnetic exchange coupling in a fluoride-bridged Dy-Cr molecular cluster. Journal of the Korean Physical Society 62, 1368–1371 (2013). https://doi.org/10.3938/jkps.62.1368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.1368

Keywords

Navigation