Skip to main content
Log in

How Far can the Anisotropy Deviate from Uniaxiality in a Dy-Based Single-Molecule Magnet? Dinuclear Dy(III) Complex Study

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The DyIII ions in the dimer [Dy2(H2tea)2(O2CPh)4]·2H2O (1) (H3tea = triethanolamine) have the 9-coordinate monocapped square-antiprismatic ligand field environment. Compound 1 shows slow relaxation of magnetization which is observable only with applied magnetic fields. This is consistent with the idea that low-symmetry ligand fields allow for the quantum tunneling of magnetization. This is reflected by the fact that there are no observable maxima in the out-of-phase ac susceptibility above 1.8 K. The {g}-tensor of the DyIII ions {g x = 11, g y = 8.2, g z = 1} further underlying the reduced uniaxiality in this system was determined in electron paramagnetic resonance (X- and Q-band) studies of 1 at temperatures down to 4 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Crystal data for 1: C40H52Dy2N2O16, 1141.83 g mol−1, triclinic, P \(^{\bar{1}}\), a = 10.0767(17), b = 10.7338(18), c = 10.8695(18) Å, α = 74.189(2), β = 75.521(3), γ = 67.417(2) °, Z = 1, V = 1030.4(3) Å3, T = 100(2) K, ρ calc = 1.840 g cm−3, F(000) = 566, μ(Mo-Kα) = 3.674 mm−1; 30,564 data, 5188 unique (R int = 0.0247), 285 parameters, final wR 2 = 0.0451, S = 1.068 (all data), R 1 (5060 data with I > 2σ(I)) = 0.0181, max. Peak/hole in final difference map +0.982/−0.503 e Å−3. CCDC 1497473.

References

  1. N. Ishikawa, M. Sugita, T. Ishikawa, S.-Y. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 125, 8694–8695 (2003)

    Article  Google Scholar 

  2. J.D. Rinehart, J.R. Long, Chem. Sci. 2, 2078–2085 (2011)

    Article  Google Scholar 

  3. N.F. Chilton, D. Collison, E.J.L. McInnes, R.E.P. Winpenny, A. Soncini, Nat. Commun. 4, 2551 (2013)

    Article  ADS  Google Scholar 

  4. L. Sorace, C. Benelli, D. Gatteschi, Chem. Soc. Rev. 40, 3092–3104 (2011)

    Article  Google Scholar 

  5. D.N. Woodruff, R.E.P. Winpenny, R.A. Layfield, Chem. Rev. 113, 5110–5148 (2013)

    Article  Google Scholar 

  6. J. Long, F. Habib, P.H. Lin, I. Korobkov, G. Enright, L. Ungur, W. Wernsdorfer, L.F. Chibotaru, M. Murugesu, J. Am. Chem. Soc. 133, 5319–5328 (2011)

    Article  Google Scholar 

  7. J.D. Rinehart, M. Fang, W.J. Evans, J.R. Long, Nat. Chem. 3, 538–542 (2011)

    Article  Google Scholar 

  8. F. Habib, P.H. Lin, J. Long, I. Korobkov, W. Wernsdorfer, M. Murugesu, J. Am. Chem. Soc. 133, 8830–8833 (2011)

    Article  Google Scholar 

  9. Y.-N. Guo, G.-F. Xu, W. Wernsdorfer, L. Ungur, Y. Guo, J. Tang, H.-J. Zhang, L.F. Chibotaru, A.K. Powell, J. Am. Chem. Soc. 133(2011), 11948–11951 (1951)

    Google Scholar 

  10. E.M. Fatila, M. Rouzières, M. Jennings, A.J. Lough, R. Clérac, K.E. Preuss, J. Am. Chem. Soc. 135, 9596–9599 (2013)

    Article  Google Scholar 

  11. R.J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison, W. Wernsdorfer, E. J. L.McInnes, L.F. Chibotaru, R. E. P. Winpenny, Nat. Chem. 5, 673–678 (2013)

    Article  Google Scholar 

  12. T. Fukuda, K. Matsumura, N. Ishikawa, J. Phys. Chem. A. 117, 10447–10454 (2013)

    Article  Google Scholar 

  13. E.M. Pineda, N.F. Chilton, R. Marx, M. Dorfel, D.O. Sells, P. Neugebauer, Sh-D Jiang, D. Collison, J. van Slageren, E.J.L. Mclnnes, R.E.P. Winpenny, Nat. Commun. 5, 5243 (2014)

    Article  Google Scholar 

  14. P. Parios, S.A. Moggach, A.R. Lennie, J.E. Warren, E.K. Brechin, M. Murrie, S. Parsons, Dalton. Trans. 39, 7004–7011 (2010)

    Article  Google Scholar 

  15. J.M. Baker, Proc. R. Soc. Lond. 413, 515–528 (1987)

    Article  ADS  Google Scholar 

  16. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970)

    Google Scholar 

  17. A. Bencini, D. Gatteschi, Electron Paramagnetic Resonance of Exchange Coupled Systems (Springer, Berlin, 1990), p. 287

    Book  Google Scholar 

  18. A. Baniodeh, Ya. Lan, Gh. Novitchi, V. Mereacre, A. Sukhanov, M. Ferbinteanu, V. Voronkova, C.E. Anson, A.K. Powell, Dalton Trans. 42, 8926–8938 (2013)

    Article  Google Scholar 

  19. Y.F. Bi, X.T. Wang, W.P. Liao, X.W. Wang, R.P. Deng, H.J. Zhang, S. Gao, Inorg. Chem. 48, 11743 (2009)

    Article  Google Scholar 

  20. G. Abbas, Y. Lan, G.E. Kostakis, W. Wernsdorfer, C.E. Anson, A.K. Powell, Inorg. Chem. 49, 8067 (2010)

    Article  Google Scholar 

  21. L. Ungur, L.F. Chibotaru, Phys. Chem. Chem. Phys. 13(45), 20086–20090 (2011)

    Article  Google Scholar 

  22. G. Cucinotta, M. Perfetti, J. Luzon, M. Etienne, P.-E. Car, A. Caneschi, G. Calvez, K. Bernot, R. Sessoli, Angew. Chem. Int. Ed. 51, 1606–1610 (2012)

    Article  Google Scholar 

  23. Y.-N. Guo, G.-F. Xu, Y. Guo, J. Tang, Dalton. Trans. 40, 9953–9963 (2011)

    Article  Google Scholar 

  24. P.-E. Car, M. Perfetti, M. Mannini, A. Favre, A. Caneschi, R. Sessoli, Chem. Commun. 47, 3751–3753 (2011)

    Article  Google Scholar 

  25. S. Misra, Y. Chang, J. Felsteinert, J. Phys. Chem. Solids 58(1), 1–11 (1997)

    Article  ADS  Google Scholar 

  26. M.L. Kahn, R. Ballou, P. Porcher, O. Kahndagger, J.-P. Sutter, Chem. Eur. J. 8, 525 (2002)

    Article  Google Scholar 

  27. J. Luzon, K. Bernot, I.J. Hewitt, C.E. Anson, A.K. Powell, R. Sessoli, Phys. Rev. Lett. 100, 247205 (2008)

    Article  ADS  Google Scholar 

  28. K. Bernot, J. Luzon, L. Bogani, M. Etienne, C. Sangregorio, M. Shanmugam, A. Caneschi, R. Sessoli, D. Gatteschi, J. Am. Chem. Soc. 131, 5573–5579 (2009)

    Article  Google Scholar 

  29. K. Bernot, J. Luzon, A. Caneschi, D. Gatteschi, R. Sessoli, L. Bogani, A. Vindigni, A. Rettori, M.G. Pini, Phys. Rev. B. 79, 134419 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG-funded transregional collaborative research center SFB/TRR 88 “3MET”. This research was further supported in part by the Russian Foundation for Basic Research (project no. 13-02-01157). RG, AS and VV thank Professor Kev Salikhov for useful discussion and Program of Presidium RAS for support. AB and AKP thank the HGF Program STN for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravil Galeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baniodeh, A., Mondal, A., Galeev, R. et al. How Far can the Anisotropy Deviate from Uniaxiality in a Dy-Based Single-Molecule Magnet? Dinuclear Dy(III) Complex Study. Appl Magn Reson 48, 101–113 (2017). https://doi.org/10.1007/s00723-016-0852-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0852-y

Keywords

Navigation