Skip to main content
Log in

Evaluation of fatty liver by using in-phase and opposed-phase MR images and in-vivo proton MR spectroscopy

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the necessity of in-phase and opposed-phase MR images and their correlations with weight, the aspartate aminotransferase/alanine aminotransferase (AST/ALT) value, and age. Magnetic resonance spectroscopy (MRS) was used as a reference in this study. We selected 68 people as subjects, among which 14 were volunteers with normal AST/ALT values (<40/35 U/L) on a liver function study and 54 were non-alcoholic fatty liver patients for whom ultrasonic images had been obtained within 3 months of the study. In this study, the liver was more enhanced than the spleen or kidney. When the Eq. (3) formula was applied to normal volunteers, the difference between the in-phase and the opposed-phase images was −3.54 ± 12.56. The MRS study result showed a high sensitivity of 96.6% and a specificity of 100% (p = 0.000) when the cutoff value was 20%. Furthermore, this result showed a high sensitivity of 94% and a specificity of 80% with a similar cutoff when the Eq. (2) formula was applied to non-alcoholic fatty liver patients (p = 0.000). The MRS study revealed a strong correlation between normal volunteers and non-alcoholic fatty liver patients (r = 0.59, p = 0.04). The correlations between AST/ALT and Eq. (3) (r = 0.45, p = 0.004), age and Eq. (3) (r = 0.73, p = 0.03), and weight and Eq. (3) (r = 0.77, p = 0.000) values were all statistically significant. In the case of non-alcoholic liver disease, MRS was found to be significantly correlated with Eq. (1) (r = 0.39, p = 0.002), Eq. (2) (r = 0.68, p = 0.04), Eq. (3) (r = 0.67, p = 0.04), and AST/ALT (r = 0.77, p = 0.000). In conclusion, in-phase and opposed-phase images can help to distinguish a normal liver from a fatty liver in order to identify non-alcoholic fatty liver patients. The intensity difference between the in-phase and opposed-phase MR signals showed valuable correlations with respect to weight, AST/ALT value, and age, with all values being above the mild lipid value (r = 0.3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kreise, N. A. Farrow and Z. Ackerman, Radiology 182, 19 (1992).

    Google Scholar 

  2. M. K. Lim, C. H. Suh, H. J. Kim, Y. K. Cho, S. H. Choi, J. H. Kang, W. Park and J. H. Lee, Radiology 217, 43 (2000).

    Google Scholar 

  3. S. H. Kim, K. H. Chang, I. C. Song, M. H. Han, H. C. Kim, H. S. Kang and M. C. Han, Radiology 204, 239 (1997).

    Google Scholar 

  4. R. Prost, V. Haughton and S. J. Li, Radiology 204, 235 (1997).

    Google Scholar 

  5. V. Govindaraju, K. Young and A. A. Maudsley, NMR Biomed. 13, 129 (2000).

    Article  Google Scholar 

  6. D. C. Woo, B. S. Kim, S. L. Jung, H. J. Park, H. S. Rhim, G. H. Jang and B. Y. Choe, J. Neurosci. Meth. 162, 101 (2007).

    Article  Google Scholar 

  7. M. Ling, J. Magn. Reson. Imaging 10, 663 (1992).

    Article  Google Scholar 

  8. F. H. Doyle et al., AJR Am. J. Roentgenol. 138, 193 (1982).

    Google Scholar 

  9. E. D. Gotsis, K. Fountas, E. Kapsalaki, P. Toulas, G. Peristeris and N. Papadakis, Anticancer Res. 16, 1565 (1996).

    Google Scholar 

  10. J. H. Lee, K. S. Cho, Y. M. Kim, S. T. Kim, C. W. Mun, J. H. Na, J. E. Mok and T. H. Lim, AJR Am. J. Roentgenol. 170, 1279 (1998).

    Google Scholar 

  11. M. Bydder et al., J. Magn. Reson. Imaging 28, 767 (2010).

    Article  Google Scholar 

  12. A. K. Poyraz, M. R. Onur, E. Kocakoc and E. Ogur, J. Magn. Reson. Imaging 35, 1108 (2012).

    Article  Google Scholar 

  13. Y. Kodama, C. S. Ng, T. T. Wu, G. D. Ayers, S. A. Curley, E. K. Abdalla, J. N. Vauthey and C. Charnsangavej, AJR Am. J. Roentgenol. 188, 1307 (2007).

    Article  Google Scholar 

  14. R. J. Borra, S. Salo, K. Dean, R. Lautamaki, P. Nuutila, M. Komu and R. Parkkola, Radiology 250, 130 (2009).

    Article  Google Scholar 

  15. W. T. Dixon, Radiology 153, 189 (1984).

    Google Scholar 

  16. D. G. Mitchell, I. Kim, T. S. Chang, S. Vinitski, P. M. Consigny, S. A. Saponaro, S. M. Ehrlich, M. D. Rifkin and R. Rubin, Invest Radiol. 26, 1041 (1991).

    Article  Google Scholar 

  17. Y. Tsushima, J. Clin. Endocr. Metab. 79, 1759 (1994).

    Article  Google Scholar 

  18. S. Nakamura, T. Namimoto, K. Morita, D. Utsunomiya, S. Oda, T. Nakaura, T. Hirai and Y. Yamashita, J. Magn. Reson. Imaging 35, 95 (2012).

    Article  Google Scholar 

  19. E. K. Outwater, R. Blasbalg, E. S. Siegelman and M. Vala, Radiographics 18, 1465 (1998).

    Google Scholar 

  20. J. Ahlbwrg, T. Custedt, K. Einarsson and J. Sjovall, J. Lipid Res. 22, 404 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Im, IC., Goo, EH. et al. Evaluation of fatty liver by using in-phase and opposed-phase MR images and in-vivo proton MR spectroscopy. Journal of the Korean Physical Society 61, 1860–1865 (2012). https://doi.org/10.3938/jkps.61.1860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1860

Keywords

Navigation