Skip to main content
Log in

Enhanced NO2 gas-sensing properties of SnO2 nanorods with a TiO2 capping

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The influence of ZnO capping on the NO2 gas-sensing properties of SnO2 nanorods was examined. SnO2-core/TiO2-shell nanorods were fabricated by using a two-step process comprising the thermal evaporation of Sn powders and the metal-organic chemical-vapor deposition of TiO2. The diameters of the SnO2 nanorods ranged from a few tens to a few hundreds of nanometers, and the lengths were up to a few hundreds of micrometers. Transmission electron microscopy and X-ray diffraction showed that the cores and the shells of the nanorods were tetragonal-structured single crystal SnO2 and amorphous TiO2, respectively. Multiple networked SnO2-core/TiO2-shell nanorod sensors showed a response of 65.08% at NO2 concentration of 50 ppm at 100 °C. The response of the SnO2 nanorod sensors to 50-ppm NO2 was increased 29 times when TiO2 capping was used. This substantial improvement can be explained by using a space-charge model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Devi, S. Manorama and V. J. Rao, Sens. Actuators, B 28, 31 (1995).

    Article  Google Scholar 

  2. F. Pourfayaz, A. Khodadadi, Y. Mortazavi and S. S. Mohajerzadeh, Sens. Actuators, B 108, 172 (2005).

    Article  Google Scholar 

  3. Q. Kuang, C. Lao, Z. L. Wang, Z. Xie and L. Zheng, J. Am. Chem. Soc. 129, 6070 (2007).

    Article  Google Scholar 

  4. A. Katsuki and K. Fukui, Sens. Actuators, B 52, 30 (1998).

    Article  Google Scholar 

  5. R. J. Choudhary, S. B. Ogale, S. R. Shinde, V. N. Kulkarni, T. Venkatesan, K. S. Harshavardhan, M. Strikovski and B. Hannoyer, Appl. Phys. Lett. 84, 1483 (2004).

    Article  ADS  Google Scholar 

  6. I. Saadeddin, B. Pecquenard, J. P. Manaud, R. Decourt, C. Labrugére, T. Buffeteau and G. Campet, Appl. Surf. Sci. 253, 5240 (2007).

    Article  ADS  Google Scholar 

  7. B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu and G. W. Yang, J. Phys. Chem. C 112, 6643 (2008).

    Article  Google Scholar 

  8. C. S. Moon, H.-R. Kim, G. Auchterlonie, J. Drennan and J.-H. Lee, Sens. Actuators, B 131, 556 (2008).

    Article  Google Scholar 

  9. A. Köck, A. Tischner, T. Maier, M. Kast, C. Edtmaier, C. Gspan and G. Kothleitner, Sens. Actuators, B 138, 160 (2009).

    Article  Google Scholar 

  10. A. Kolmakov, Y. Zhang, G. Cheng and M. Moskovits, Adv. Mater. 15, 997 (2003).

    Article  Google Scholar 

  11. Y. Liu, E. Koep and M. Liu, Chem. Mater. 17, 3997 (2005).

    Article  Google Scholar 

  12. M. Law, H. Kind, B. Messer, F. Kim and P. Yang, Angew. Chem. 114, 2511 (2002).

    Article  Google Scholar 

  13. Y.-H. Lin, M.-W. Huang, C.-K. Liu, J.-R. Chen, J.-M. Wu and H. C. Shih, J. Electrochem. Soc. 156, K196 (2009).

    Article  Google Scholar 

  14. N. S. Ramgir, I. S. Mulla and K. P. Vijayamohanan, Sens. Actuators, B 107, 708 (2005).

    Article  Google Scholar 

  15. G. Gundiah, A. Govindaraj and C. N. R. Rao, Chem. Phys. Lett. 351, 189 (2002).

    Article  ADS  Google Scholar 

  16. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang and S. Q. Feng, Solid State Commun. 109, 677 (1999).

    Article  ADS  Google Scholar 

  17. B. C. Kim, K. T. Sun, K. S. Park, K. J. Im, T. Noh, M. Y. Sung, S. Kim, S. Nahm, Y. N. Choi and S. S. Park, Appl. Phys. Lett. 80, 479 (2002).

    Article  ADS  Google Scholar 

  18. Y. H. Gao, Y. Bando, T. Sato, Y. F. Zhang and X. Q. Gao, Appl. Phys. Lett. 81, 2267 (2002).

    Article  ADS  Google Scholar 

  19. C. C. Tang, S. S. Fan, M. L. de la Chapelle and P. Li, Chem. Phys. Lett. 333, 12 (2001).

    Article  ADS  Google Scholar 

  20. M. A. Sanchez-Castillo, C. Couto, W. B. Kim and J. A. Dumestic, Angew. Chem. 116, 1160 (2004).

    Article  Google Scholar 

  21. G. Jágerszki, R. E. Gyurcsányi, L. Höfler and E. Pretsch, Nano Lett. 7, 1609 (2007).

    Article  Google Scholar 

  22. Y. Oshima and A. Onga, Phys. Rev. Lett. 91, 205503 (2003).

    Article  ADS  Google Scholar 

  23. B. L. Zhu, C. S. Xie, W. Y. Wang, K. J. Huang and J. H. Hu, Mater. Lett. 58, 624 (2004).

    Article  Google Scholar 

  24. U. Hoefer, J. Frank and M. Fleischer, Sens. Actuators, B 78, 6 (2001).

    Article  Google Scholar 

  25. K. D. Schierbaum, U. Weimar, W. Gpel and R. Kowalkowski, Sens. Actautors, B 3, 205 (1991).

    Article  Google Scholar 

  26. O. V. Safonova, G. Delabouglise, B. Chenevier, A. M. Gaskov and M. Labeau, Mater. Sci. Eng., C 21, 105 (2002).

    Article  Google Scholar 

  27. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Sens. Actuators, B 3, 147 (1991).

    Article  Google Scholar 

  28. C. L. Zhu, Y. J. Chen, R. X. Wang, L. J. Wang, M. S. Cao and X. L. Shi, Sens. Actuators, B 140, 185 (2009).

    Article  Google Scholar 

  29. H. Ogawa, M. Nishikawa and A. Abe, J. Appl. Phys. 53, 4448 (1982).

    Article  ADS  Google Scholar 

  30. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).

    Article  Google Scholar 

  31. R. A. Parker, Phys. Rev. 124, 1719 (1961).

    Article  ADS  Google Scholar 

  32. T. Weis, R. Lipperheide, U. Wille and S. Brehme, J. Appl. Phys. 92, 1411 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C., Park, S., Kim, H. et al. Enhanced NO2 gas-sensing properties of SnO2 nanorods with a TiO2 capping. Journal of the Korean Physical Society 61, 1370–1375 (2012). https://doi.org/10.3938/jkps.61.1370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1370

Keywords

Navigation