Skip to main content
Log in

Effects of Particle Size on the NO2 Gas Sensing Properties of NiO Nanoparticle-Decorated SnO2 Nanorods

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study reports the effects of NiO nanoparticle (NP) size on the sensing performance of NiO NP-decorated SnO2 nanorods (NRs). NiO NP-decorated SnO2 NRs were synthesized using a two-step process: 1) thermal evaporation of tin powders in an oxidizing atmosphere based on the vapor-liquid-solid growth mechanism and 2) solvothermal decoration of SnO2 NRs with NiO NPs. X-ray diffraction and transmission electron microscopy analyses revealed that both the SnO2 NRs and the NiO NPs were polycrystalline. Scanning electron microscopy images showed that the diameters of the NRs ranged from 100 to 200 nm and that those of the small and the large NiO NPs ranged from 20 to 30 nm and from 80 to 180 nm, respectively. The small NiO NP-decorated SnO2 NRs showed stronger response to NO2 than did the large NiO NP-decorated SnO2 NRs over the concentration range of 0.5–100 ppm. Decoration of SnO2 NRs with small NiO NPs resulted in enhanced sensing performance whereas decoration of SnO2 NRs with large NiO NPs deteriorated the sensing performance. The superior NO2 gas sensing performance of the small NiO NP-decorated SnO2 NR sensor as compared to that of the large NiO NP-decorated SnO2 NR sensor was attributed to a higher ratio of n-SnO2 to p-NiO and a higher number of p-n heterojunctions for the same volume of NiO in the former than in the latter. In addition, the small NiO NP-decorated SnO2 NR sensors showed selectivity toward NO2 against other competing gases such as SO2, CO2, CO, H2, C7H8 and C6H6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Wan and T. Wang, Chem. Commun. 1, 3841 (2005).

    Article  Google Scholar 

  2. X. Xue et al., J. Phys. Chem. C 112, 12157 (2008).

    Article  Google Scholar 

  3. A. Kolmakov et al., Nano Lett. 5, 667 (2005).

    Article  ADS  Google Scholar 

  4. Q. Kuang et al., J. Phys. Chem. C 112, 11539 (2008).

    Article  Google Scholar 

  5. H. Kim et al., Sens. Actuators B 161, 594 (2012).

    Article  Google Scholar 

  6. D. Wang et al., J. Phys. Chem. C 112, 13499 (2008).

    Article  Google Scholar 

  7. S. Park, S. An, Y. Mun and C. Lee, ACS Appl. Mater. Interfaces 5, 4285 (2013).

    Article  Google Scholar 

  8. J. Tamaki et al., Sens. Actuators B 49, 121 (1998).

    Article  Google Scholar 

  9. L. Lin et al., Nanoscale 5, 588 (2013).

    Article  ADS  Google Scholar 

  10. C. Jin, S. Park, H. Kim and C. Lee, Sens. Actuators B 161, 223 (2012).

    Article  Google Scholar 

  11. C. Cao et al., Sens. Actuators B 156, 114 (2011).

    Article  Google Scholar 

  12. S. W. Fan, A. K. Srivastava and V. P. Dravid, Appl. Phys. Lett. 95, 142106 (2009).

    Article  ADS  Google Scholar 

  13. S. Park et al., ACS Appl. Mater. Interfaces 4, 3650 (2012).

    Article  Google Scholar 

  14. W. Wen, J. M. Wu and Y. D. Wang, Sens. Actuators B 184, 78 (2013).

    Article  Google Scholar 

  15. X. Cai et al., Sens. Actuators B 198, 402 (2014).

    Article  Google Scholar 

  16. H. Sato, T. Minami, S. Takata and T. Yamada, Thin Solid Films 236, 27 (1993).

    Article  ADS  Google Scholar 

  17. I. Bouessay, A. Rougier, B. Beaudoin and J. B. Leriche, Appl. Surf. Sci. 186, 490 (2005).

    Article  ADS  Google Scholar 

  18. I. Bouessay et al., Electrochim. Acta 50, 3737 (2005).

    Article  Google Scholar 

  19. A. M. Turky, Appl. Catal. A 247, 83 (2003).

    Article  Google Scholar 

  20. H. Kumagai, M. Matsumoto, K. Toyoda and M. Obara, J. Mater. Sci. Lett. 15, 1081 (1996).

    Article  Google Scholar 

  21. I. Hotovy et al., Sens. Actuators B 103, 300 (2004).

    Article  Google Scholar 

  22. I. Hotovy et al., Thin Solid Films 515, 658 (2006).

    Article  ADS  Google Scholar 

  23. A. Aslani and M. Fallahi, Appl. Surf. Sci. 257, 4056 (2011).

    Article  ADS  Google Scholar 

  24. P. Rai et al, Nanoscale 6, 8292 (2014).

    Article  ADS  Google Scholar 

  25. S. H. Kim, S. H. Park, S. Y. Park and C. Lee, Sens. Actuators B 209, 180 (2015).

    Article  Google Scholar 

  26. N. Barsan and U. Weimar, J. Electroceramics 7, 143 (2001).

    Article  Google Scholar 

  27. N. D. Hoa and S. A. El-Safty, Chem. Eur. J. 17, 12896 (2011).

    Article  Google Scholar 

  28. S-W. Choi et al., J. Mater. Chem. C 1, 2834 (2013).

    Article  Google Scholar 

  29. A. Kar et al., Nanotechnology 22, 285709 (2011).

    Article  ADS  Google Scholar 

  30. A. Mirzaei et al., Ceram. Int. 42, 6136 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study was supported by the 2020 Basic Science Research Program, the research project title of which is Development of capsule-type sensors for detecting gases in the mute, through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K., Jeong, G., Hyun, S.K. et al. Effects of Particle Size on the NO2 Gas Sensing Properties of NiO Nanoparticle-Decorated SnO2 Nanorods. J. Korean Phys. Soc. 77, 482–488 (2020). https://doi.org/10.3938/jkps.77.482

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.482

Keywords

Navigation