Skip to main content
Log in

Structural and optical characterization of GaN nanostructures formed by using N+ implantation into GaAs at various temperature

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We have investigated the evolution of GaN phase nanocrystallite formation in a GaAs matrix by using nitrogen-ion implantation and subsequent rapid thermal annealing. A semi-insulating GaAs (100) wafer was implanted with 50-keV nitrogen ions at fluences in the range of 0.5 ∼ 4.0 × 1017 cm−2 at temperatures of room temperature, 500 °C and 700 °C, followed by post-implantation annealing at 500 ∼ 900 °C under a pure nitrogen gas flow. In the case of high-temperature implantation, there were no significant changes in the UV-VIS absorption spectra after high-temperature annealing compared with the spectra of the as-implanted sample. On the other hand, microscopic blistering and/or exfoliation is preferred after post-implantation annealing at high temperatures above 600 °C. As a consequence, low-temperature implantation (<200 °C is recommended in order to keep a morphologically-clean sample surfaces especially at an implantation fluence of 2 × 1017 cm−2 or more. Formation of nanometer-sized GaN crystallites was confirmed by using X-ray diffraction, cross-sectional transmission electron microscopy and low-temperature photoluminescence spectroscopy, and the effects of different annealing conditions on the evolution of the structures of the crystallites are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Baranwal, R. Krishna, F. Singh, A. Tripathi, A. C. Pandey and D. Kanjilal, Appl. Surf. Sci. 253, 5317 (2007).

    Article  ADS  Google Scholar 

  2. S. Amine, G. Ben Assayag, C. Bonafos, B. de Mauduit, H. Hidriss and A. Claverie, Mater. Sci. Eng., B 93, 10 (2002).

    Article  Google Scholar 

  3. Yu. A. Bumai, D. S. Bobuchenko, A. N. Akimov, L. A. Vlasukova and A. R. Filipp, Vacuum 78, 19 (2005).

    Article  Google Scholar 

  4. J. Wang, H. Mao, Z. Zhu, Q. Zhao, Z. Li and W. Lu, Appl. Surf. Sci. 252, 2186 (2006).

    Article  ADS  Google Scholar 

  5. N. Georgobiani, I. V. Rogozin and M. B. Kotlyarevsky, Inorg. Mater. 42, 830 (2006).

    Article  Google Scholar 

  6. M. Mikoushkin, Yu. S. Gordeev, S. Yu. Nikonov, A. P. Solonitsina, A. A. Zhuravleva and M. M. Brzhezinskaya, Phys. Status Solidi C 12, 2655 (2009).

    Article  ADS  Google Scholar 

  7. B. Boudart, J. C. Pesant, J. C. de Jaeger and P. A. Dhamelincourt, J. Raman Spectrosc. 31, 615 (2000).

    Article  ADS  Google Scholar 

  8. S. Dhara, P. Magudapathy, R. Kesavamoorthy, S. Kalavathi, K. G. M. Nair, G. M. Hsu, L. C. Chen, K. H. Chen, K. Santhakumar and T. Soga, Appl. Phys. Lett. 87, 261915 (2005).

    Article  ADS  Google Scholar 

  9. X. W. Lin, M. Behar, R. Maltez, W. Swider, Z. Liliental- Weber and J. Washburn, Appl. Phys, Lett. 67, 2699 (1995).

    Article  ADS  Google Scholar 

  10. X. Weng, R. S. Goldman, V. Rotberg, N. Bataiev and L. J. Brillson, Appl. Phys. Lett. 85, 2774 (2004).

    Article  ADS  Google Scholar 

  11. X. Weng, S. J. Clarke, W. Ye, S. Kumar, R. S. Goldman, A. Daniel, R. Clarke, J. Holt, J. Sipowska and A. Francis, J. Appl. Phys. 92, 4012 (2002).

    Article  ADS  Google Scholar 

  12. K. Kuriyama, T. Tsunoda, N. Hayashi and Y. Takahashi, Nucl. Instrum. Methods Phys. Res., Sect. B 148, 432 (1999).

    Article  ADS  Google Scholar 

  13. R. R. Collino, B. B. Dick, F. Naab, Y. Q. Wang, M. D. Thouless and R. S. Goldman, Appl. Phys. Lett. 95, 111912 (2009).

    Article  ADS  Google Scholar 

  14. R. Jose, Z. Zhelev, R. Bakalova, Y. Baba and M. Ishikawa, Appl. Phys. Lett. 89, 013115 (2006).

    Article  ADS  Google Scholar 

  15. J.-Y. Zhang, X.-Y. Wang, M. Xiao, L. Qu and X. Peng, Appl. Phys. Lett. 81, 2076 (2002).

    Article  ADS  Google Scholar 

  16. K. C. Lo, H. P. Ho, K. Y. Fu, P. K. Chu, K. F. Li and K. W. Cheah, J. Appl. Phys. 95, 8178 (2004).

    Article  ADS  Google Scholar 

  17. G. Pan, M. E. Kordesch and P. G. Van Patten, Chem. Mater. 18, 3915 (2006).

    Article  Google Scholar 

  18. R. Jose, Z. Zhelev, R. Bakalova, Y. Baba and M. Ishikawa, Appl. Phys. Lett. 89, 013115 (2006).

    Article  ADS  Google Scholar 

  19. X. W. Lin, M. Behar, R. Maltez, W. Swider, Z. Liliental-Weber and J. Washburn, Appl. Phys. Lett. 67, 2699 (1995).

    Article  ADS  Google Scholar 

  20. R. K. Roy, S. R. Bhattacharyya, S. Bandyopadhayay and A. K. Pal, Thin Solid Films 500, 144 (2006).

    Article  ADS  Google Scholar 

  21. Y. G. Cao, X. L. Chen, J. Y. Li, Y. C. Lan and J. K. Liang, Appl. Phys. A 71, 229 (2000).

    ADS  Google Scholar 

  22. S. Shanthi, M. Hashimoto, Y. K. Zhou, S. Kimura, S. Emura and S. Hasegawa, N. Hasuike, H. Harima and H. Asahi, Appl. Phys. Lett. 86, 092102 (2005).

    Article  ADS  Google Scholar 

  23. M. Cazzanelli, D. Cole, J. F. Donegan, J. G. Lunney, P. G. Middleton, K. P. O’Donnell, C. Vinegoni and L. Pavesi, Appl. Phys. Lett. 73, 3390 (1998).

    Article  ADS  Google Scholar 

  24. S. Yamazaki, T. Yatsui, M. Ohtsu, T.-W. Kim and H. Fujioka, Appl. Phys. Lett. 85, 3059 (2004).

    Article  ADS  Google Scholar 

  25. K. W. Mah, J.-P. Mosnier, E. McGlynn, M. O. Henry, D. O’Mahony and J. G. Lunney, Appl. Phys. Lett. 80, 3301 (2002).

    Article  ADS  Google Scholar 

  26. Z. Chen, D.-C. Lu, X. Liu, X. Wang, P. Han, D. Wang, H. Yuan, Z. Wang, G. Li and Z. Fang, J. Appl. Phys. 93, 316 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Joo Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, HJ., Kim, GD., Choi, HW. et al. Structural and optical characterization of GaN nanostructures formed by using N+ implantation into GaAs at various temperature. Journal of the Korean Physical Society 60, 383–387 (2012). https://doi.org/10.3938/jkps.60.383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.383

Keywords

Navigation