Skip to main content
Log in

Terahertz frequency response of electrons in a single-walled zigzag carbon nanotube

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We theoretically study the frequency-dependent characteristic of the electron dynamic mobility in a semiconducting, single-walled, zigzag carbon nanotube (CNT). The dynamic mobility is obtained by solving the balance equations and taking into account the relaxation processes within a nonparabolic band picture. The electron mobility is shown to exhibit a large and fast response to an external ac electric field. For fields above the threshold electric field corresponding to the peak drift velocity, the calculation predicts a cutoff frequency in the range of terahertz frequency, above which the negative differential mobility disappears. The numerical results indicate that the semiconducting CNT can be exploited for generation and amplification of terahertz signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  2. R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).

    Article  ADS  Google Scholar 

  3. T. Ando, Semicond. Sci. Technol. 15, R13 (2000).

    Article  ADS  Google Scholar 

  4. J. C. Charlier, Acc. Chem. Res. 35, 1063 (2002).

    Article  Google Scholar 

  5. D. P. Clougherty, Phys. Rev. Lett. 90, 035507 (2003).

    Article  ADS  Google Scholar 

  6. J. Q. Lu, J. Wu, W. Duan, F. Liu, B. F. Zhu and B. L. Gu, Phys. Rev. Lett 90, 156601 (2003).

    Article  ADS  Google Scholar 

  7. G. Pennington and N. Goldsman, Phys. Rev. B 68, 045426 (2003).

    Article  ADS  Google Scholar 

  8. A. Verma, M. Z. Kauser and P. P. Ruden, J. Appl. Phys. 97, 114319 (2005).

    Article  ADS  Google Scholar 

  9. V. Perebeinos, J. Tersoff and P. Avouris, Phys. Rev. Lett. 94, 086802 (2005).

    Article  ADS  Google Scholar 

  10. E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson and H. Dai, Phys. Rev. Lett. 95, 155505 (2005).

    Article  ADS  Google Scholar 

  11. M. Z. Kauser and P. P. Ruden, Appl. Phys. Lett. 89, 162104 (2006).

    Article  ADS  Google Scholar 

  12. D. Dragoman and M. Dragoman, Phys. Rev. B 73, 125417 (2006).

    Article  ADS  Google Scholar 

  13. A. Vijayaraghavan, S. Kar, S. Rumyantsev, A. Khanna, C. Soldano, N. Pala, R. Vajtai, K. Kanzaki, Y. Kobayashi, O. Nalamasu, M. S. Shur and P. M. Ajayan, J. Appl. Phys. 100, 024315 (2006).

    Article  ADS  Google Scholar 

  14. C. Zhang, J. C. Cao, X. G. Guo and F. Liu, Appl. Phys. Lett. 90, 023106 (2007); C. Zhang, L. Chen and Z. S. Ma, Phys. Rev. B 77, 241402(R) (2008).

    Article  ADS  Google Scholar 

  15. J. C. Charlier, X. Blase and S. Roche, Rev. Mod. Phys. 79, 677 (2007).

    Article  ADS  Google Scholar 

  16. K. H. Khoo, J. B. Neaton, Y. W. Son, M. L. Cohen and S. G. Louie, Nano Lett. 8, 2900 (2008).

    Article  ADS  Google Scholar 

  17. V. Perebeinos, S. V. Rotkin, A. G. Petrov and P. Avouris, Nano Lett. 9, 312 (2009).

    Article  ADS  Google Scholar 

  18. P. L. McEuen, M. S. Fuhrer and H. Park, IEEE Trans. Nanotechnol. 1, 78 (2002).

    Article  ADS  Google Scholar 

  19. J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze and J. Tersoff, Science 300, 783 (2003).

    Article  ADS  Google Scholar 

  20. J. Wu, J. Zhang, B. Larade, H. Guo, X. G. Gong and F. Liu, Phys. Rev. B 69, 153406 (2004).

    Article  ADS  Google Scholar 

  21. A. Akturk, N. Goldsman, G. Pennington and A. Wickenden, Phys. Rev. Lett. 98, 166803 (2007).

    Article  ADS  Google Scholar 

  22. B. K. Ridley and T. B. Watkins, Proc. Phys. Soc. London 78, 293 (1961).

    Article  ADS  Google Scholar 

  23. A. A. Ignatov and Y. A. Romanov, Phys. Status Solidi B 73, 327 (1976).

    Article  ADS  Google Scholar 

  24. X. L. Lei, N. J. M. Horing and H. L. Cui, Phys. Rev. Lett. 66, 3277 (1991).

    Article  ADS  Google Scholar 

  25. X. L. Lei, J. Phys. Condens. Matter 6, 10043 (1994).

    Article  ADS  Google Scholar 

  26. M. Shur, Electron. Lett. 12, 615 (1976).

    Article  Google Scholar 

  27. J. P. Nougier, J. C. Vaissiere, D. Gasquet, J. Zimmermann and E. Constant, J. Appl. Phys. 52, 825 (1981).

    Article  ADS  Google Scholar 

  28. E. W. S. Caetano, E. A. Mendes, V. N. Freire, J. A. P. da Costa and X. L. Lei, Phys. Rev. B 57, 11872 (1998).

    Article  ADS  Google Scholar 

  29. E. F. Bezerra, E. W. S. Caetano, V. N. Freire, V. Lemos, J. A. P. da Costa and E. F. da Silva, Jr., J. Appl. Phys. 91, 5208 (2002).

    Article  ADS  Google Scholar 

  30. E. Starikov, P. Shiktorov, V. Gruinskis, L. Varani, J. C. Vaissière, C. Palermo and L. Reggiani, J. Appl. Phys. 98, 083701 (2005).

    Article  ADS  Google Scholar 

  31. J. C. Cao, Phys. Rev. B 69, 165203 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Cao, J.C. Terahertz frequency response of electrons in a single-walled zigzag carbon nanotube. Journal of the Korean Physical Society 60, 1263–1266 (2012). https://doi.org/10.3938/jkps.60.1263

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.1263

Keywords

Navigation