Skip to main content
Log in

Structure parameters and external electric field effects on exciton binding energies of CdTe/ZnTe quantum dots

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study the effects of the structure parameters of self-assembled CdTe/ZnTe quantum dots (QDs) under an electric field on the exciton binding energies due to Coulomb interaction between electrons and holes with a finite-element method based on the linear elasticity theory of solids and the eight-band k · p Hamiltonian. The exciton binding energy is shown to decrease with increasing base width of the QD, regardless of its height. We point out that the monotonic decrease in the exciton binding energy is due to the confinement of the electron and the hole wavefunctions inside the QD. The exciton binding energy is also found to decrease as the wetting layer thickness increases, which can be attributed to the dipole-like wavefunction of the hole. The fact that the electron and the hole energies decrease parabolically and the exciton binding energy decreases with increasing electric field due to the Stark effect is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mackowski, Thin Solid Films 412, 96 (2002).

    Article  ADS  Google Scholar 

  2. L. V. Borkovska, N. O. Korsunska, Yu. G. Sadofyev, R. Beyer, J. Weber, T. Kryshtab, J. A. Andraca-Adame, P. Kazakov and V. I. Kushnirenko, Phys. Status Solidi B 244, 1700 (2007).

    Article  ADS  Google Scholar 

  3. T. A. Nguyen, S. Mackowski, T. B. Hoang, H. E. Jackson, L. M. Smith and G. Karczewski, Phys. Rev. B 76, 245320 (2007).

    Article  ADS  Google Scholar 

  4. J. Brault, M. Gendry, G. Grenet, G. Hollinger, J. Olivares, B. Salem, T. Benyattou and G. Bremondm, J. Appl. Phys. 92, 506 (2002).

    Article  ADS  Google Scholar 

  5. H. S. Lee, K. H. Lee, J. C. Choi, H. L. Park, T. W. Kim and D. C. Choo, Appl. Phys. Lett. 81, 3750 (2002).

    Article  ADS  Google Scholar 

  6. G. Karczewski, S. Maćkowski, M. Kutrowski, T. Wojtowicz and J. Kossut, Appl. Phys. Lett. 74, 3011 (1999).

    Article  ADS  Google Scholar 

  7. H. S. Lee, H. L. Park and T. W. Kim, Appl. Phys. Lett. 85, 5598 (2004).

    Article  ADS  Google Scholar 

  8. H. S. Lee, H. L. Park and T. W. Kim, Appl. Phys. Lett. 90, 181909 (2007).

    Article  ADS  Google Scholar 

  9. H. S. Lee, H. L. Park and T. W. Kim, Appl. Phys. Lett. 92, 052108 (2008).

    Article  ADS  Google Scholar 

  10. T. W. Kim, E. H. Lee, K. H. Lee, J. S. Kim and H. L. Park, Appl. Phys. Lett. 84, 595 (2004).

    Article  ADS  Google Scholar 

  11. H. Matsueda and J. P. Dowling, Superlattices Microstruct. 31, 73 (2002).

    Article  ADS  Google Scholar 

  12. W. P. Hong and S. H. Park, J. Korean Phys. Soc. 55, 1607 (2009).

    Article  ADS  Google Scholar 

  13. W. P. Hong and S. H. Park, J. Korean Phys. Soc. 55, 2496 (2009).

    Article  ADS  Google Scholar 

  14. S. H. Park and W. P. Hong, Jpn. J. Appl. Phys. 49, 012801 (2010).

    Article  ADS  Google Scholar 

  15. A. Nazir, B. W. Lovett, S. D. Barrett, J. H. Reina and G. Briggs, Phys. Rev. B 71, 045334 (2005).

    Article  ADS  Google Scholar 

  16. T. B. Bahder, Phys. Rev. B 41, 11992 (1990).

    Article  ADS  Google Scholar 

  17. K. H. Huebner, D. L. Dewhirst, D. E. Smith and T. G. Byrom, The Finite Element Method for Engineers, 4th ed. (Wiley, New York, 2001).

    Google Scholar 

  18. M. Yamada, K. Yamamoto and K. Abe, J. Phys. D 10, 1309 (1977).

    Article  ADS  Google Scholar 

  19. R. D. Greenough and S. B. Palmer, J. Phys. D 6, 587 (1973).

    Article  ADS  Google Scholar 

  20. S. P. Patil and R. V. N Melnik, Phys. Status Solidi A 206, 960 (2009).

    Article  ADS  Google Scholar 

  21. Ç. Allahverdi and M. H. Yükselici, New J. Phys. 10 103029 (2008).

    Article  ADS  Google Scholar 

  22. S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (Wiley, Chichester, 2005), p218.

    Book  Google Scholar 

  23. S. Baskoutas, Chem. Phys. Lett. 404, 1107 (2005).

    Article  Google Scholar 

  24. S. Noda, T. Abe and M. Tamura, Phys. Rev. B 58, 7181 (1998).

    Article  ADS  Google Scholar 

  25. H. T. Johnson and L. B. Freund, C. D. Akyüz and A. Zaslavsky, J. Appl. Phys. 92, 5819 (1998).

    Google Scholar 

  26. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley-IEEE Press, London, 2002), p. 340.

    MATH  Google Scholar 

  27. W. P. Hong and S. H. Park, Jpn. J. Appl. Phys. 50, 065203 (2011).

    Article  ADS  Google Scholar 

  28. W. P. Hong and S. H. Park, J. Korean Phys. Soc. 57, 178 (2009).

    Google Scholar 

  29. A.V. Filinov, M. Bonitz and Yu. E. Lozovik, Phys. Status Solidi C 238, 1441 (2003).

    Article  Google Scholar 

  30. S. S. Li and J. B. Xia, Appl Phys. Lett. 87, 043102–1 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Pyo Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, WP., Park, SH. & Shegelski, M.R.A. Structure parameters and external electric field effects on exciton binding energies of CdTe/ZnTe quantum dots. Journal of the Korean Physical Society 60, 118–124 (2012). https://doi.org/10.3938/jkps.60.118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.118

Keywords

Navigation