Skip to main content
Log in

Influence of the Size and Dielectric Environments on the Optical Properties in CdS/ZnS Core–Shell Quantum Dot

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, the electronic and optical properties of CdS/ZnS core–shell quantum dots (CSQDs) capped in different matrices were investigated theoretically. Through the effective mass approximation (EMA) and the density matrix approach (DMA), the quantized energy levels and their corresponding wave functions of the system were obtained by solving the Schrödinger equation in a spherical coordinates system. In addition, the effects of the incident optical intensity, the number of dots per unit volume, dielectric mismatch of the organic and inorganic matrix, and geometric parameters of the structure, such as the core/shell radius ratio for CdS/ZnS CSQDs on the optical properties, were evaluated and discussed. The results revealed that both the size and dielectric environments had a substantial effect on the optical features of these nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

We don’t want to share your data before we have thoroughly analyzed it. All data sources described in this study are led by the corresponding authors.

References

  1. Huang X, Tong X, Wang Z (2020) J Electron Sci Technol 100018–100029

  2. Rana M, Jain A, Rani V, Chowdhury P (2019) Inorg Chem Commun 112:107723–107752

    Article  Google Scholar 

  3. Elamathi M, John Peter A, Lee CW (2020) Eur Phys J D 74(10):196–214

  4. Vasileiadis M, Koutselas I, Pispas S, Vainos NA (2015) J Polym Sci, Part B: Polym Phys 54(5):552–560

    Article  Google Scholar 

  5. Lesyuk R, Cai B, Reuter U, Gaponik N, Popovych D, Lesnyak V (2017) Small Methods 1(9):1700189–1700199

    Article  Google Scholar 

  6. Talbi A, El Haouari M, Nouneh K, Mustapha Feddi E, Addou M (2021) Eur Phys J Appl Phys 93:10401–10411

  7. Onyeaju MC, Onate CA (2021) European Physical Journal D 75:1–8

    Article  Google Scholar 

  8. Ibral A, Zouitine A, Assaid EM, Feddi EM, Dujardin F (2014) Physica B 449:261–268

    Article  CAS  Google Scholar 

  9. Maikhuri D, Purohit SP, Mathur KC (2012) AIP Adv 2:012160–012171

    Article  Google Scholar 

  10. Holmström P, Thylén L, Bratkovsky A (2010) J Appl Phys 107(6) (2010)

  11. Zaiping Z, Christos S, Garoufalis S, Baskoutas S (2016) J Nanoelectron Optoelectron (11):1–5

  12. Niculescu EC (2012) Superlattices Microstruct 51:814–824

    Article  CAS  Google Scholar 

  13. Anchala Purohit SP, Mathur KC (2011) J Appl Phys 110:114320–114326

  14. Cristea M, Niculescu EC (2012) European Physical Journal B 85(191):363–376

    Google Scholar 

  15. Vahdani MRK, Ehsanfard N (2018) Physica B 548:1–9

    Article  CAS  Google Scholar 

  16. Hemdana I, Mahdouani M, Bourguiga R (2013) Transp Theory Stat Phys 42(6–7):381–398.064307–064313

  17. Zeiri N, Naifar A, Abdi-Ben Nasrallah S, Said M (2018) Optik 176:162–167

  18. Talbi A, El Haouari M, Nouneh K, Pérez LM, Tiutiunnyk A, Laroze D, Courel M, Mora-Ramos ME, Feddi E (2021) Appl Phys A 127:30(1)–30(17)

  19. Stojanović D, Kostić R (2018) Opt Quant Electron 50:174(2)–174(10).

  20. Vahdani MRK (2014) Superlattices Microstruct 76:326–338

    Article  CAS  Google Scholar 

  21. Zeng XC, Bergman DJ, Hui PM, Stroud D (1988) Phys Rev B 38:10970–10973

    Article  CAS  Google Scholar 

  22. Zeiri N, Naifar A, Abdi-Ben Nasrallah S, Said M (2020) Chem Phys Lett 744:137215–137221

  23. Hewa-Kasakarage NN, El-Khoury PZ, Schmall N, Kirsanova M, Nemchinov A, Tarnovsky AN, Zamkov AM (2009) Appl Phys Lett 94(13):133113–133117

    Article  Google Scholar 

  24. Zeng Z, Paspalakis E, Garoufalis CS, Terzis AF, Baskoutas S (2013) J Appl Phys 113:0543030

    Google Scholar 

  25. Vahdani MRK (2014) Superlattices and Microstructures 76:326–338

  26. Negi CMS, Gupta SK, Kumar D, Kumar J (2013) Superlattices Microstruct 60:462–474

    Article  CAS  Google Scholar 

  27. Hosseini SM, Vahedi A (2017) Optik - International Journal for Light and Electron Optics 130:1222–1228

    Article  CAS  Google Scholar 

  28. Sundheep R, Prasanth R (2016) J Mater Sci: Mater Electron 28(4):3168–3174

    Google Scholar 

  29. Jeong H, Shin SK (2018) Chem Phys Lett 692:333–339

    Article  CAS  Google Scholar 

  30. Thuy UTD, Liem NQ, Thanh DX, Protière M, Reiss P (2007) Appl Phys Lett 91(24):241908–241912

    Article  Google Scholar 

  31. Casas Espínola JL, Hernández Contreras XA (2017) J Mater Sci: Mater Electron 28(10):7132–7138

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number RGP2/19/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Zeiri.

Ethics declarations

Ethical Approval

The authors, a signatory below, declare by the present statement that all the exhibited results in this work could be very useful in the design of optoelectronic and electro-optic devices. This work opens perspectives in nanostructures field research for further advances in optoelectronics research.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahayaoui, N., Zeiri, N., Baser, P. et al. Influence of the Size and Dielectric Environments on the Optical Properties in CdS/ZnS Core–Shell Quantum Dot. Plasmonics 18, 1489–1498 (2023). https://doi.org/10.1007/s11468-023-01868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01868-z

Keywords

Navigation