Skip to main content
Log in

Calculation and Fabrication of a CH3NH3Pb(SCN)xI3−x Perovskite Film as a Light Absorber in Carbon-based Hole-transport-layer-free Perovskite Solar Cells

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

CH3NH3Pb(SCN)xI3−x films were prepared using a hot-casting method with five different Pb(SCN)2/PbI2 levels (x = 0, 0.25, 0.5, 1 and 2). Substitution of SCN in the CH3NH3PbI3 structures induces a film color transformation from black to yellow. UV vis spectra of CH3NH3Pb(SCN)xI3−x films display an increased band gap from 1.59 eV (pure CH3NH3PbI3 film) to 2.37 eV (MAPb(SCN)2I films). Experimental XRD spectra of CH3NH3Pb(SCN)xI3−x films for increasing SCN levels show a reduced angle of the (110) plane in the same trend as for the simulated tetragonal CH3NH3Pb(SCN)xI3−x structures. The calculated bandgap of simulated tetragonal CH3NH3Pb(SCN)xI3−x structures also increases with the SCN concentration. Maximal efficiency, 4.56%, was gained from a carbon-based hole-transport layer (HTL)-free CH3NH3PbI3 (x = 0) perovskite solar cell. This is attributed to the low bandgap of CH3NH3PbI3 (1.59 eV). Although, the efficiency of the carbon-based HTL-free CH3NH3Pb(SCN)xI3−x solar cells decreases with increasing SCN ratio, the excellent solar cell stability was obtained from carbon-based HTL-free CH3NH3Pb(SCN)xI3−x (x = 0.25, 0.5, 1 and 2) solar cells. This should be influenced by the presence of the hydrogen bonds between H and S and/or H and N in the CH3NH3Pb(SCN)xI3−x structures. The carbon-based HTL-free CH3NH3Pb(SCN)0.5I2.5 solar cell delivers a promising efficiency of 3.07%, and its efficiency increases by 11.40% of its initial value after 30-day storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Article  Google Scholar 

  2. J-H. Im et al., Nanoscale 3, 4088 (2011).

    Article  ADS  Google Scholar 

  3. NREL Efficiency Chart. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20191106.pdf (accessed August 8, 2019).

  4. M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photonics 8, 506 (2014).

    Article  ADS  Google Scholar 

  5. C. Wehrenfennig et al., Adv. Mater. 26, 1584 (2014).

    Article  Google Scholar 

  6. N-G. Park, Mater. Today 18, 65 (2015).

    Article  Google Scholar 

  7. J. Fan, B. Jia and M. Gu, Photonics Res. 2, 111 (2014).

    Article  Google Scholar 

  8. D. Shi et al., Science 347, 519 (2015).

    Article  ADS  Google Scholar 

  9. S. D. Stranks et al., Science 342, 341 (2013).

    Article  ADS  Google Scholar 

  10. Z. Wang et al., J. Mater. Chem. A 7, 2773 (2019).

    Article  Google Scholar 

  11. J. Liang et al., J. Am. Chem. Soc. 138, 15829 (2016).

    Article  Google Scholar 

  12. L. A. Frolova et al., J. Phys. Chem. Lett. 8, 67 (2017).

    Article  Google Scholar 

  13. X. Tan et al., Appl. Surf. Sci. 499, 143990 (2019).

    Article  Google Scholar 

  14. J. H. Noh et al., Nano Lett. 13, 1764 (2013).

    Article  ADS  Google Scholar 

  15. C. Liu et al., J. Am. Chem. Soc. 140, 3825 (2018).

    Article  Google Scholar 

  16. B. Yu et al., J. Mater. Chem. A 6, 19810 (2018).

    Article  Google Scholar 

  17. Q. Tai et al., Nat. Commun. 7, 11105 (2016).

    Article  ADS  Google Scholar 

  18. Q. Jiang et al., Angew. Chem. Int. Ed. 54, 7617 (2015).

    Article  Google Scholar 

  19. Y. Chen et al., Chem. Commun. 51, 11997 (2015).

    Article  Google Scholar 

  20. Y-H. Chiang et al., ChemSusChem 9, 2620 (2016).

    Article  Google Scholar 

  21. A. Halder et al., J. Phys. Chem. Lett. 6, 3483 (2015).

    Article  Google Scholar 

  22. Y. Zhang et al., Metals 8, 964 (2018).

    Article  Google Scholar 

  23. S. Maniarasu et al., Renew. Sustain. Energy Rev. 82, 845 (2018).

    Article  Google Scholar 

  24. F. Zhang et al., ACS Appl. Mater. Interfaces 6, 16140 (2014).

    Article  Google Scholar 

  25. H. Chen and S. Yang, Adv. Mater. 29, 1603994 (2017).

    Article  Google Scholar 

  26. Z. Ku et al., Sci. Rep. 3, 3132 (2013).

    Article  Google Scholar 

  27. N. Ahn et al., J. Mater. Chem. A 6, 1382 (2018).

    Article  Google Scholar 

  28. T. Oku, Solar Cells - New Approaches and Reviews, edited by L. A. Kosyachenko (Shiga, Japan, October 22, 2015), p. 78.

  29. T. Baikie et al., J. Mater. Chem. A 1, 5628 (2013).

    Article  Google Scholar 

  30. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  31. Q. Xi et al., Appl. Surf. Sci. 463, 1107 (2019).

    Article  ADS  Google Scholar 

  32. Y. Iwadate, K. Kawamura, K. Igarashi and J. Mochinaga, J. Phys. Chem. 86, 5205 (1982).

    Article  Google Scholar 

  33. J. H. Lee, J-H. Lee, E-H. Kong and H. M. Jang, Sci. Rep. 6, 21687 (2016).

    Article  ADS  Google Scholar 

  34. W. Geng et al., J. Phys. Chem. C 118, 19565 (2014).

    Article  Google Scholar 

  35. F. El-Mellouhi et al., ChemSusChem 9, 2648 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Thailand Center of Excellence in Physics (ThEP), by the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC) and Khon Kaen University by the National Nanotechnology Center (NANOTEC), NSTDA, Srinakharinwirot University (contract No. 676/2563), Ministry of Higher Education, Science, Research and Innovation (MHESI), Thailand, through its program of Center of Excellence Network. P. Kumlangwan would like to thank the Thailand Graduate Institute of Science and Technology (TGIST) for a NSTDA scholarship in support of her Master of Science degree under the scholar contract No. TGIST 01-57-006.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wirat Jarernboon or Samuk Pimanpang.

Supplementary Material

40042_2020_4682_MOESM1_ESM.pdf

Calculation and Fabrication of a CH3NH3Pb(SCN)xI3−x Perovskite Film as a Light Absorber in Carbon-based Hole-transport-layer-free Perovskite Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumlangwan, P., Suksangrat, P., Towannang, M. et al. Calculation and Fabrication of a CH3NH3Pb(SCN)xI3−x Perovskite Film as a Light Absorber in Carbon-based Hole-transport-layer-free Perovskite Solar Cells. J. Korean Phys. Soc. 77, 1210–1217 (2020). https://doi.org/10.3938/jkps.77.1210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.1210

Keywords

Navigation