Skip to main content
Log in

Influence of SCN moiety on CH3NH3PbI3 perovskite film properties and the performance of carbon-based hole-transport-layer-free perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CH3NH3PbI3 perovskite films were prepared via a hot-casting method using six different CH3NH3I, PbI2 and Pb(SCN)2 solutions. Surface morphology of perovskite films with low SCN dopant levels (0.0625 M and 0.125 M Pb(SCN)2) showed smooth surfaces and large grain sizes. However, with the high SCN dopant levels (0.1875 M and 0.25 M Pb(SCN)2), rough surfaces were produced with pinholes. The crystal of pure CH3NH3PbI3 (0 M Pb(SCN)2) film is a tetragonal perovskite structure. XRD spectra of all five Pb(SCN)2 added films show the present of CH3NH3PbI3 films and the additional peak at 12.66°. Rietveld refinement analysis reveals that the Pb(SCN)2 addition causes the second phase PbI2 formation along with the tetragonal MAPbI3 perovskite film rather than the CH3NH3Pb(SCN)xI3-x perovskite formation. The carbon-based hole-transport-layer (HTL)-free perovskite (from 0.0625 M Pb(SCN)2 dopant) solar cell is the optimal ratio in generating a promising cell efficiency, 6.34%, with a good efficiency retention of 79.43% after 30 days of testing in comparison to a pure CH3NH3PbI3 (0 M Pb(SCN)2 dopant) perovskite solar cell with an efficiency retention of only 26.92%. The great stability of the Pb(SCN)2 added perovskite solar cells is attributed to the PbI2 layer covered MAPbI3 grains blocking oxygen and/or water molecules from degrading MAPbI3 perovskite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Li, M. Liu, J. Mater. Chem. A 5, 15447 (2017). https://doi.org/10.1039/C7TA01325F

    Article  CAS  Google Scholar 

  2. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  3. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A.W.Y. Ho-Baillie, Prog. Photovoltaics Res. Appl. 28, 3 (2020). https://doi.org/10.1002/pip.3228

    Article  Google Scholar 

  4. NREL, Best Research-Cell Efficiency Chart. (National Renewable Energy Laboratory, 2020), https://www.nrel.gov/pv/cell-efficiency.html. Accessed 22 November 2020

  5. C. Lin, Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00592

    Article  Google Scholar 

  6. H. Zheng, C. Li, A. Wei, J. Liu, Y. Zhao, Z. Xiao, Int. J. Hydrogen Energy 43, 11403 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.226

    Article  CAS  Google Scholar 

  7. I. Mesquita, L. Andrade, A. Mendes, Renew. Sustain. Energy Rev. 82, 2471 (2018). https://doi.org/10.1016/j.rser.2017.09.011

    Article  CAS  Google Scholar 

  8. P. Hang, J. Xie, G. Li et al., iScience 21, 217 (2019). https://doi.org/10.1016/j.isci.2019.10.021

    Article  CAS  Google Scholar 

  9. N.R. Poespawati, J. Sulistianto, T. Abuzairi, R.W. Purnamaningsih, Int. J. Photoenergy 2020, 8827917 (2020). https://doi.org/10.1155/2020/8827917

    Article  CAS  Google Scholar 

  10. L. McGovern, M.H. Futscher, L.A. Muscarella, B. Ehrler, J. Phys. Chem. Lett. 11, 7127 (2020). https://doi.org/10.1021/acs.jpclett.0c01822

    Article  CAS  Google Scholar 

  11. P. Kumlangwan, P. Suksangrat, M. Towannang et al., J. Korean Phys. Soc. 77, 1210 (2020). https://doi.org/10.3938/jkps.77.1210

    Article  CAS  Google Scholar 

  12. Q. Tai, P. You, H. Sang et al., Nat. Commun. 7, 11105 (2016). https://doi.org/10.1038/ncomms11105

    Article  CAS  Google Scholar 

  13. Y. Lou, Y. Niu, D. Yang et al., Nano Res. 11, 2715 (2018). https://doi.org/10.1007/s12274-017-1901-z

    Article  CAS  Google Scholar 

  14. Y. Chen, B. Li, W. Huang, D. Gao, Z. Liang, Chem. Commun. 51, 11997 (2015). https://doi.org/10.1039/C5CC03615A

    Article  CAS  Google Scholar 

  15. Q. Jiang, D. Rebollar, J. Gong, E.L. Piacentino, C. Zheng, T. Xu, Angew. Chem. Int. Ed. 54, 7617 (2015). https://doi.org/10.1002/anie.201503038

    Article  CAS  Google Scholar 

  16. Z. Yao, Z. Jin, X. Zhang et al., J. Mater. Chem. C 7, 13736 (2019). https://doi.org/10.1039/C9TC04851K

    Article  CAS  Google Scholar 

  17. Y. Zhang, H. Zhang, X. Zhang et al., Metals 8, 964 (2018). https://doi.org/10.3390/met8110964

    Article  CAS  Google Scholar 

  18. T. Liu, Z. Wang, L. Lou, S. Xiao, S. Zheng, S. Yang, Solar RRL 4, 1900278 (2020). https://doi.org/10.1002/solr.201900278

    Article  CAS  Google Scholar 

  19. F. Bu, B. He, Y. Ding et al., Sol. Energy Mater. Sol. Cells 205, 110267 (2020). https://doi.org/10.1016/j.solmat.2019.110267

    Article  CAS  Google Scholar 

  20. C. Wang, J. Zhang, L. Jiang et al., J. Alloy. Compd. 817, 152768 (2020). https://doi.org/10.1016/j.jallcom.2019.152768

    Article  CAS  Google Scholar 

  21. G. Wang, J. Liu, M. Lei, W. Zhang, G. Zhu, Electrochim. Acta 349, 136354 (2020). https://doi.org/10.1016/j.electacta.2020.136354

    Article  CAS  Google Scholar 

  22. L. Etgar, P. Gao, Z. Xue et al., J. Am. Chem. Soc. 134, 17396 (2012). https://doi.org/10.1021/ja307789s

    Article  CAS  Google Scholar 

  23. H. Zhou, Y. Shi, Q. Dong et al., J. Phys. Chem. Lett. 5, 3241 (2014). https://doi.org/10.1021/jz5017069

    Article  CAS  Google Scholar 

  24. K. Cao, Z. Zuo, J. Cui et al., Nano Energy 17, 171 (2015). https://doi.org/10.1016/j.nanoen.2015.08.009

    Article  CAS  Google Scholar 

  25. X. Xu, Z. Liu, Z. Zuo et al., Nano Lett. 15, 2402 (2015). https://doi.org/10.1021/nl504701y

    Article  CAS  Google Scholar 

  26. W. Ke, C. Xiao, C. Wang et al., Adv. Mater. 28, 5214 (2016). https://doi.org/10.1002/adma.201600594

    Article  CAS  Google Scholar 

  27. P. Sukseangrat, N. Faibut, A. Chompoosor et al., J. Mater. Sci.: Mater. Electron. 32, 1 (2021). https://doi.org/10.1007/s10854-020-04924-0

    Article  CAS  Google Scholar 

  28. K Persson (2014), Materials Data on PbI2 (SG:156) by Materials Project. https://materialsproject.org/materials/mp-567246/. Accessed 15 May 2021

  29. T. Baikie, Y. Fang, J.M. Kadro et al., J. Mater. Chem. A 1, 5628 (2013). https://doi.org/10.1039/C3TA10518K

    Article  CAS  Google Scholar 

  30. T. Oku, Solar cells - New Approaches and Reviews. ed. by L.A. Kosyachenko (Shiga, Japan, 2015), p.78

  31. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  32. A. Halder, R. Chulliyil, A.S. Subbiah et al., J. Phys. Chem. Lett. 6, 3483 (2015). https://doi.org/10.1021/acs.jpclett.5b01327

    Article  CAS  Google Scholar 

  33. M. Matuchova, K. Zdansky, J. Zavadil, A. Danilewsky, J. Maixner, D. Alexiev, J. Mater. Sci.: Mater. Electron. 20, 289 (2009). https://doi.org/10.1007/s10854-008-9831-x

    Article  CAS  Google Scholar 

  34. B. Gebremichael, G. Alemu, G. Tessema Mola (2017) Phys. B. Condens. Matt. 514, 85

Download references

Acknowledgements

This work was supported by the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research, and Innovation (MHESI) and Khon Kaen University, Thailand, and by National Research Council of Thailand and Srinakharinwirot University (Contract No. 028/2564), and by the Thailand Center of Excellence in Physics (ThEP), and by Research and Graduate Studies, Khon Kaen University, and by the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (Grant No. B05F640110).

Author information

Authors and Affiliations

Authors

Contributions

PP—Performing experiment, analyzing data, writing manuscript, revising manuscript. NA—Performing experiment. NC—Performing experiment, analyzing data. PK—Performing experiment. MT—Performing experiment. PK—Writing manuscript. PS—Computer simulation, modifying manuscript. AT—Modifying manuscript. PK—Modifying manuscript. WJ—Modifying manuscript. SP—Suggesting research topic, analyzing data, writing manuscript, revising manuscript. VA—Modifying manuscript.

Corresponding authors

Correspondence to Pawinee Klangtakai or Samuk Pimanpang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research Involving Human/Animal Participants

This article does not contain any studies involving animals and humans performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2533 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasan, P., Aunping, N., Chanlek, N. et al. Influence of SCN moiety on CH3NH3PbI3 perovskite film properties and the performance of carbon-based hole-transport-layer-free perovskite solar cells. J Mater Sci: Mater Electron 33, 1589–1603 (2022). https://doi.org/10.1007/s10854-021-07687-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07687-4

Navigation