Skip to main content
Log in

Inhomogeneous nucleation and domain wall motion with Barkhausen avalanches in epitaxial PbZr0.4Ti0.6O3 thin films

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated the ferroelectric (FE) domain nucleation and domain wall motion in epitaxial PbZr0.4Ti0.6O3 capacitors by using modified piezoresponse force microscopy with the domaintracing method. From time-dependent FE domain evolution images, we observed that defectmediated inhomogeneous nucleation occurred with a stochastic nature. In addition, we found that the number of nuclei N(t) was linearly proportional to log t, where t is the accumulated time of the applied pulse fields. The time-dependence of N(t) suggests a distribution of energy barriers for nucleation, which may determine the stochastic nature of domain nucleation. We also observed that the domain grew with consecutive Barkhausen avalanches and that the growth direction became anisotropic when the domain radius was larger than a critical radius of about 100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).

    Google Scholar 

  2. M. Dawber, K. M. Rabe and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).

    Article  ADS  Google Scholar 

  3. S. M. Yang, J.-G. Yoon and T. W. Noh, Curr. Appl. Phys. 11, 1111 (2011).

    Article  ADS  Google Scholar 

  4. A. N. Kolmogorov, Izv. Akad. Nauk SSSR. Ser. Mat. 3, 355 (1937).

    Google Scholar 

  5. M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    Article  ADS  Google Scholar 

  6. Y. Ishibashi and Y. Takagi, J. Phys. Soc. Jpn. 31, 506 (1971).

    Article  ADS  Google Scholar 

  7. Y. W. So, D. J. Kim, T. W. Noh, J.-G. Yoon and T. K. Song, Appl. Phys. Lett. 86, 092905 (2005).

    Article  ADS  Google Scholar 

  8. J. Y. Jo, S. M. Yang, T. H. Kim, H. N. Lee, J. G. Yoon, S. Park, Y. Jo, M. H. Jung and T. W. Noh, Phys. Rev. Lett. 102, 045701 (2009).

    Article  ADS  Google Scholar 

  9. T. H. Kim, J. Y. Jo, S. M. Yang, D. H. Kim, S. Park, Y. Jo, J. G. Yoon and T. K. Song, J. Korean Phys. Soc. 56, 503 (2010).

    Article  Google Scholar 

  10. A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross and M. Tsukada, Phys. Rev. B 66, 214109 (2002).

    Article  ADS  Google Scholar 

  11. J. Y. Jo, S. M. Yang, H. S. Han, D. J. Kim, W. S. Choi, T. W. Noh, T. K. Song, J. G. Yoon, C. Y. Koo, J. H. Cheon and S. H. Kim, Appl. Phys. Lett. 92, 012917 (2008).

    Article  ADS  Google Scholar 

  12. S. M. Yang, S. Y. Jang, T. H. Kim, H.-H. Kim, H. N. Lee and J.-G. Yoon, J. Korean Phys. Soc. 58, 599 (2011).

    Article  Google Scholar 

  13. A. Gruverman, B. J. Rodriguez, C. Dehoff, J. D. Waldrep, A. I. Kingon, R. J. Nemanich and J. S. Cross, Appl. Phys. Lett. 87, 082902 (2005).

    Article  ADS  Google Scholar 

  14. S. M. Yang, J. Y. Jo, D. J. Kim, H. Sung, T. W. Noh, H. N. Lee, J. G. Yoon and T. K. Song, Appl. Phys. Lett. 92, 252901 (2008).

    Article  ADS  Google Scholar 

  15. S. M. Yang, J. W. Heo, H. N. Lee, T. K. Song and J. G. Yoon, J. Korean Phys. Soc. 55, 820 (2009).

    Article  ADS  Google Scholar 

  16. D. J. Kim, J. Y. Jo, T. H. Kim, S. M. Yang, B. Chen, Y. S. Kim and T. W. Noh, Appl. Phys. Lett. 91, 132903 (2007).

    Article  ADS  Google Scholar 

  17. D. J. Kim, J. Y. Jo, Y. S. Kim and T. K. Song, J. Phys. D: Appl. Phys. 43, 395403 (2010).

    Article  Google Scholar 

  18. S. M. Yang, J. Y. Jo, T. H. Kim, J. G. Yoon, T. K. Song, H. N. Lee, Z. Marton, S. Park, Y. Jo and T. W. Noh, Phys. Rev. B 82, 174125 (2010).

    Article  ADS  Google Scholar 

  19. J. F. Scott, A. Gruverman, D. Wu, I. Vrejoiu and M. Alexe, J. Phys.: Condens. Matter 20, 425222 (2008).

    Article  ADS  Google Scholar 

  20. T. K. Song and S. M. Yang, J. Korean Phys. Soc. 55, 618 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  21. H. Barkhausen, Z. Phys. 20, 401 (1919).

    Google Scholar 

  22. J. P. Sethna, K. A. Dahmen and C. R. Myers, Nature 410, 242 (2001).

    Article  ADS  Google Scholar 

  23. K. S. Ryu, H. Akinaga and S. C. Shin, Nat. Phys. 3, 547 (2007).

    Article  Google Scholar 

  24. A. Schwarz, M. Liebmann, U. Kaiser, R. Wiesendanger, T. W. Noh and D. W. Kim, Phys. Rev. Lett. 92, 077206 (2004).

    Article  ADS  Google Scholar 

  25. E. V. Colla, L. K. Chao and M. B. Weissman, Phys. Rev. Lett. 88, 017601 (2002).

    Article  ADS  Google Scholar 

  26. R. W. Chantrell, A. Lyberatos, M. El-Hilo and K. O’Grady, J. Appl. Phys. 76, 6407 (1994).

    Article  ADS  Google Scholar 

  27. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).

    Article  ADS  Google Scholar 

  28. P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Gul Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S.M., Kim, HH., Kim, T.H. et al. Inhomogeneous nucleation and domain wall motion with Barkhausen avalanches in epitaxial PbZr0.4Ti0.6O3 thin films. Journal of the Korean Physical Society 60, 249–253 (2012). https://doi.org/10.3938/jkps.60.249

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.249

Keywords

Navigation